/* * awk.y --- yacc/bison parser */ /* * Copyright (C) 1986, 1988, 1989, 1991, 1992, 1993 the Free Software Foundation, Inc. * * This file is part of GAWK, the GNU implementation of the * AWK Progamming Language. * * GAWK is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * GAWK is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GAWK; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ %{ #ifdef DEBUG #define YYDEBUG 12 #endif #include "awk.h" static void yyerror (); /* va_alist */ static char *get_src_buf P((void)); static int yylex P((void)); static NODE *node_common P((NODETYPE op)); static NODE *snode P((NODE *subn, NODETYPE op, int sindex)); static NODE *mkrangenode P((NODE *cpair)); static NODE *make_for_loop P((NODE *init, NODE *cond, NODE *incr)); static NODE *append_right P((NODE *list, NODE *new)); static void func_install P((NODE *params, NODE *def)); static void pop_var P((NODE *np, int freeit)); static void pop_params P((NODE *params)); static NODE *make_param P((char *name)); static NODE *mk_rexp P((NODE *exp)); static int want_assign; /* lexical scanning kludge */ static int want_regexp; /* lexical scanning kludge */ static int can_return; /* lexical scanning kludge */ static int io_allowed = 1; /* lexical scanning kludge */ static char *lexptr; /* pointer to next char during parsing */ static char *lexend; static char *lexptr_begin; /* keep track of where we were for error msgs */ static char *lexeme; /* beginning of lexeme for debugging */ static char *thisline = NULL; #define YYDEBUG_LEXER_TEXT (lexeme) static int param_counter; static char *tokstart = NULL; static char *tok = NULL; static char *tokend; #define HASHSIZE 1021 /* this constant only used here */ NODE *variables[HASHSIZE]; extern char *source; extern int sourceline; extern struct src *srcfiles; extern int numfiles; extern int errcount; extern NODE *begin_block; extern NODE *end_block; %} %union { long lval; AWKNUM fval; NODE *nodeval; NODETYPE nodetypeval; char *sval; NODE *(*ptrval)(); } %type function_prologue function_body %type rexp exp start program rule simp_exp %type non_post_simp_exp %type pattern %type action variable param_list %type rexpression_list opt_rexpression_list %type expression_list opt_expression_list %type statements statement if_statement opt_param_list %type opt_exp opt_variable regexp %type input_redir output_redir %type print %type func_name %type lex_builtin %token FUNC_CALL NAME REGEXP %token ERROR %token YNUMBER YSTRING %token RELOP APPEND_OP %token ASSIGNOP MATCHOP NEWLINE CONCAT_OP %token LEX_BEGIN LEX_END LEX_IF LEX_ELSE LEX_RETURN LEX_DELETE %token LEX_WHILE LEX_DO LEX_FOR LEX_BREAK LEX_CONTINUE %token LEX_PRINT LEX_PRINTF LEX_NEXT LEX_EXIT LEX_FUNCTION %token LEX_GETLINE %token LEX_IN %token LEX_AND LEX_OR INCREMENT DECREMENT %token LEX_BUILTIN LEX_LENGTH /* these are just yylval numbers */ /* Lowest to highest */ %right ASSIGNOP %right '?' ':' %left LEX_OR %left LEX_AND %left LEX_GETLINE %nonassoc LEX_IN %left FUNC_CALL LEX_BUILTIN LEX_LENGTH %nonassoc ',' %nonassoc MATCHOP %nonassoc RELOP '<' '>' '|' APPEND_OP %left CONCAT_OP %left YSTRING YNUMBER %left '+' '-' %left '*' '/' '%' %right '!' UNARY %right '^' %left INCREMENT DECREMENT %left '$' %left '(' ')' %% start : opt_nls program opt_nls { expression_value = $2; } ; program : rule { if ($1 != NULL) $$ = $1; else $$ = NULL; yyerrok; } | program rule /* add the rule to the tail of list */ { if ($2 == NULL) $$ = $1; else if ($1 == NULL) $$ = $2; else { if ($1->type != Node_rule_list) $1 = node($1, Node_rule_list, (NODE*)NULL); $$ = append_right ($1, node($2, Node_rule_list,(NODE *) NULL)); } yyerrok; } | error { $$ = NULL; } | program error { $$ = NULL; } | /* empty */ { $$ = NULL; } ; rule : LEX_BEGIN { io_allowed = 0; } action { if (begin_block) { if (begin_block->type != Node_rule_list) begin_block = node(begin_block, Node_rule_list, (NODE *)NULL); (void) append_right (begin_block, node( node((NODE *)NULL, Node_rule_node, $3), Node_rule_list, (NODE *)NULL) ); } else begin_block = node((NODE *)NULL, Node_rule_node, $3); $$ = NULL; io_allowed = 1; yyerrok; } | LEX_END { io_allowed = 0; } action { if (end_block) { if (end_block->type != Node_rule_list) end_block = node(end_block, Node_rule_list, (NODE *)NULL); (void) append_right (end_block, node( node((NODE *)NULL, Node_rule_node, $3), Node_rule_list, (NODE *)NULL)); } else end_block = node((NODE *)NULL, Node_rule_node, $3); $$ = NULL; io_allowed = 1; yyerrok; } | LEX_BEGIN statement_term { warning("BEGIN blocks must have an action part"); errcount++; yyerrok; } | LEX_END statement_term { warning("END blocks must have an action part"); errcount++; yyerrok; } | pattern action { $$ = node ($1, Node_rule_node, $2); yyerrok; } | action { $$ = node ((NODE *)NULL, Node_rule_node, $1); yyerrok; } | pattern statement_term { $$ = node ($1, Node_rule_node, node(node(node(make_number(0.0), Node_field_spec, (NODE *) NULL), Node_expression_list, (NODE *) NULL), Node_K_print, (NODE *) NULL)); yyerrok; } | function_prologue function_body { func_install($1, $2); $$ = NULL; yyerrok; } ; func_name : NAME { $$ = $1; } | FUNC_CALL { $$ = $1; } | lex_builtin { yyerror("%s() is a built-in function, it cannot be redefined", tokstart); errcount++; /* yyerrok; */ } ; lex_builtin : LEX_BUILTIN | LEX_LENGTH ; function_prologue : LEX_FUNCTION { param_counter = 0; } func_name '(' opt_param_list r_paren opt_nls { $$ = append_right(make_param($3), $5); can_return = 1; } ; function_body : l_brace statements r_brace opt_semi { $$ = $2; can_return = 0; } ; pattern : exp { $$ = $1; } | exp ',' exp { $$ = mkrangenode ( node($1, Node_cond_pair, $3) ); } ; regexp /* * In this rule, want_regexp tells yylex that the next thing * is a regexp so it should read up to the closing slash. */ : '/' { ++want_regexp; } REGEXP '/' { NODE *n; size_t len; getnode(n); n->type = Node_regex; len = strlen($3); n->re_exp = make_string($3, len); n->re_reg = make_regexp($3, len, 0, 1); n->re_text = NULL; n->re_flags = CONST; n->re_cnt = 1; $$ = n; } ; action : l_brace statements r_brace opt_semi opt_nls { $$ = $2 ; } | l_brace r_brace opt_semi opt_nls { $$ = NULL; } ; statements : statement { $$ = $1; } | statements statement { if ($1 == NULL || $1->type != Node_statement_list) $1 = node($1, Node_statement_list,(NODE *)NULL); $$ = append_right($1, node( $2, Node_statement_list, (NODE *)NULL)); yyerrok; } | error { $$ = NULL; } | statements error { $$ = NULL; } ; statement_term : nls | semi opt_nls ; statement : semi opt_nls { $$ = NULL; } | l_brace r_brace { $$ = NULL; } | l_brace statements r_brace { $$ = $2; } | if_statement { $$ = $1; } | LEX_WHILE '(' exp r_paren opt_nls statement { $$ = node ($3, Node_K_while, $6); } | LEX_DO opt_nls statement LEX_WHILE '(' exp r_paren opt_nls { $$ = node ($6, Node_K_do, $3); } | LEX_FOR '(' NAME LEX_IN NAME r_paren opt_nls statement { $$ = node ($8, Node_K_arrayfor, make_for_loop(variable($3,1), (NODE *)NULL, variable($5,1))); } | LEX_FOR '(' opt_exp semi exp semi opt_exp r_paren opt_nls statement { $$ = node($10, Node_K_for, (NODE *)make_for_loop($3, $5, $7)); } | LEX_FOR '(' opt_exp semi semi opt_exp r_paren opt_nls statement { $$ = node ($9, Node_K_for, (NODE *)make_for_loop($3, (NODE *)NULL, $6)); } | LEX_BREAK statement_term /* for break, maybe we'll have to remember where to break to */ { $$ = node ((NODE *)NULL, Node_K_break, (NODE *)NULL); } | LEX_CONTINUE statement_term /* similarly */ { $$ = node ((NODE *)NULL, Node_K_continue, (NODE *)NULL); } | print '(' expression_list r_paren output_redir statement_term { $$ = node ($3, $1, $5); } | print opt_rexpression_list output_redir statement_term { if ($1 == Node_K_print && $2 == NULL) $2 = node(node(make_number(0.0), Node_field_spec, (NODE *) NULL), Node_expression_list, (NODE *) NULL); $$ = node ($2, $1, $3); } | LEX_NEXT opt_exp statement_term { NODETYPE type; if ($2 && $2 == lookup("file")) { if (do_lint) warning("`next file' is a gawk extension"); if (do_unix || do_posix) { /* * can't use yyerror, since may have overshot * the source line */ errcount++; msg("`next file' is a gawk extension"); } if (! io_allowed) { /* same thing */ errcount++; msg("`next file' used in BEGIN or END action"); } type = Node_K_nextfile; } else { if (! io_allowed) yyerror("next used in BEGIN or END action"); type = Node_K_next; } $$ = node ((NODE *)NULL, type, (NODE *)NULL); } | LEX_EXIT opt_exp statement_term { $$ = node ($2, Node_K_exit, (NODE *)NULL); } | LEX_RETURN { if (! can_return) yyerror("return used outside function context"); } opt_exp statement_term { $$ = node ($3, Node_K_return, (NODE *)NULL); } | LEX_DELETE NAME '[' expression_list ']' statement_term { $$ = node (variable($2,1), Node_K_delete, $4); } | LEX_DELETE NAME statement_term { if (do_lint) warning("`delete array' is a gawk extension"); if (do_unix || do_posix) { /* * can't use yyerror, since may have overshot * the source line */ errcount++; msg("`delete array' is a gawk extension"); } $$ = node (variable($2,1), Node_K_delete, (NODE *) NULL); } | exp statement_term { $$ = $1; } ; print : LEX_PRINT { $$ = $1; } | LEX_PRINTF { $$ = $1; } ; if_statement : LEX_IF '(' exp r_paren opt_nls statement { $$ = node($3, Node_K_if, node($6, Node_if_branches, (NODE *)NULL)); } | LEX_IF '(' exp r_paren opt_nls statement LEX_ELSE opt_nls statement { $$ = node ($3, Node_K_if, node ($6, Node_if_branches, $9)); } ; nls : NEWLINE { want_assign = 0; } | nls NEWLINE ; opt_nls : /* empty */ | nls ; input_redir : /* empty */ { $$ = NULL; } | '<' simp_exp { $$ = node ($2, Node_redirect_input, (NODE *)NULL); } ; output_redir : /* empty */ { $$ = NULL; } | '>' exp { $$ = node ($2, Node_redirect_output, (NODE *)NULL); } | APPEND_OP exp { $$ = node ($2, Node_redirect_append, (NODE *)NULL); } | '|' exp { $$ = node ($2, Node_redirect_pipe, (NODE *)NULL); } ; opt_param_list : /* empty */ { $$ = NULL; } | param_list { $$ = $1; } ; param_list : NAME { $$ = make_param($1); } | param_list comma NAME { $$ = append_right($1, make_param($3)); yyerrok; } | error { $$ = NULL; } | param_list error { $$ = NULL; } | param_list comma error { $$ = NULL; } ; /* optional expression, as in for loop */ opt_exp : /* empty */ { $$ = NULL; } | exp { $$ = $1; } ; opt_rexpression_list : /* empty */ { $$ = NULL; } | rexpression_list { $$ = $1; } ; rexpression_list : rexp { $$ = node ($1, Node_expression_list, (NODE *)NULL); } | rexpression_list comma rexp { $$ = append_right($1, node( $3, Node_expression_list, (NODE *)NULL)); yyerrok; } | error { $$ = NULL; } | rexpression_list error { $$ = NULL; } | rexpression_list error rexp { $$ = NULL; } | rexpression_list comma error { $$ = NULL; } ; opt_expression_list : /* empty */ { $$ = NULL; } | expression_list { $$ = $1; } ; expression_list : exp { $$ = node ($1, Node_expression_list, (NODE *)NULL); } | expression_list comma exp { $$ = append_right($1, node( $3, Node_expression_list, (NODE *)NULL)); yyerrok; } | error { $$ = NULL; } | expression_list error { $$ = NULL; } | expression_list error exp { $$ = NULL; } | expression_list comma error { $$ = NULL; } ; /* Expressions, not including the comma operator. */ exp : variable ASSIGNOP { want_assign = 0; } exp { if (do_lint && $4->type == Node_regex) warning("Regular expression on left of assignment."); $$ = node ($1, $2, $4); } | '(' expression_list r_paren LEX_IN NAME { $$ = node (variable($5,1), Node_in_array, $2); } | exp '|' LEX_GETLINE opt_variable { $$ = node ($4, Node_K_getline, node ($1, Node_redirect_pipein, (NODE *)NULL)); } | LEX_GETLINE opt_variable input_redir { if (do_lint && ! io_allowed && $3 == NULL) warning("non-redirected getline undefined inside BEGIN or END action"); $$ = node ($2, Node_K_getline, $3); } | exp LEX_AND exp { $$ = node ($1, Node_and, $3); } | exp LEX_OR exp { $$ = node ($1, Node_or, $3); } | exp MATCHOP exp { if ($1->type == Node_regex) warning("Regular expression on left of MATCH operator."); $$ = node ($1, $2, mk_rexp($3)); } | regexp { $$ = $1; } | '!' regexp %prec UNARY { $$ = node(node(make_number(0.0), Node_field_spec, (NODE *) NULL), Node_nomatch, $2); } | exp LEX_IN NAME { $$ = node (variable($3,1), Node_in_array, $1); } | exp RELOP exp { if (do_lint && $3->type == Node_regex) warning("Regular expression on left of comparison."); $$ = node ($1, $2, $3); } | exp '<' exp { $$ = node ($1, Node_less, $3); } | exp '>' exp { $$ = node ($1, Node_greater, $3); } | exp '?' exp ':' exp { $$ = node($1, Node_cond_exp, node($3, Node_if_branches, $5));} | simp_exp { $$ = $1; } | exp simp_exp %prec CONCAT_OP { $$ = node ($1, Node_concat, $2); } ; rexp : variable ASSIGNOP { want_assign = 0; } rexp { $$ = node ($1, $2, $4); } | rexp LEX_AND rexp { $$ = node ($1, Node_and, $3); } | rexp LEX_OR rexp { $$ = node ($1, Node_or, $3); } | LEX_GETLINE opt_variable input_redir { if (do_lint && ! io_allowed && $3 == NULL) warning("non-redirected getline undefined inside BEGIN or END action"); $$ = node ($2, Node_K_getline, $3); } | regexp { $$ = $1; } | '!' regexp %prec UNARY { $$ = node((NODE *) NULL, Node_nomatch, $2); } | rexp MATCHOP rexp { $$ = node ($1, $2, mk_rexp($3)); } | rexp LEX_IN NAME { $$ = node (variable($3,1), Node_in_array, $1); } | rexp RELOP rexp { $$ = node ($1, $2, $3); } | rexp '?' rexp ':' rexp { $$ = node($1, Node_cond_exp, node($3, Node_if_branches, $5));} | simp_exp { $$ = $1; } | rexp simp_exp %prec CONCAT_OP { $$ = node ($1, Node_concat, $2); } ; simp_exp : non_post_simp_exp /* Binary operators in order of decreasing precedence. */ | simp_exp '^' simp_exp { $$ = node ($1, Node_exp, $3); } | simp_exp '*' simp_exp { $$ = node ($1, Node_times, $3); } | simp_exp '/' simp_exp { $$ = node ($1, Node_quotient, $3); } | simp_exp '%' simp_exp { $$ = node ($1, Node_mod, $3); } | simp_exp '+' simp_exp { $$ = node ($1, Node_plus, $3); } | simp_exp '-' simp_exp { $$ = node ($1, Node_minus, $3); } | variable INCREMENT { $$ = node ($1, Node_postincrement, (NODE *)NULL); } | variable DECREMENT { $$ = node ($1, Node_postdecrement, (NODE *)NULL); } ; non_post_simp_exp : '!' simp_exp %prec UNARY { $$ = node ($2, Node_not,(NODE *) NULL); } | '(' exp r_paren { $$ = $2; } | LEX_BUILTIN '(' opt_expression_list r_paren { $$ = snode ($3, Node_builtin, (int) $1); } | LEX_LENGTH '(' opt_expression_list r_paren { $$ = snode ($3, Node_builtin, (int) $1); } | LEX_LENGTH { if (do_lint) warning("call of `length' without parentheses is not portable"); $$ = snode ((NODE *)NULL, Node_builtin, (int) $1); if (do_posix) warning( "call of `length' without parentheses is deprecated by POSIX"); } | FUNC_CALL '(' opt_expression_list r_paren { $$ = node ($3, Node_func_call, make_string($1, strlen($1))); } | variable | INCREMENT variable { $$ = node ($2, Node_preincrement, (NODE *)NULL); } | DECREMENT variable { $$ = node ($2, Node_predecrement, (NODE *)NULL); } | YNUMBER { $$ = $1; } | YSTRING { $$ = $1; } | '-' simp_exp %prec UNARY { if ($2->type == Node_val) { $2->numbr = -(force_number($2)); $$ = $2; } else $$ = node ($2, Node_unary_minus, (NODE *)NULL); } | '+' simp_exp %prec UNARY { /* was: $$ = $2 */ /* POSIX semantics: force a conversion to numeric type */ $$ = node (make_number(0.0), Node_plus, $2); } ; opt_variable : /* empty */ { $$ = NULL; } | variable { $$ = $1; } ; variable : NAME { $$ = variable($1,1); } | NAME '[' expression_list ']' { if ($3->rnode == NULL) { $$ = node (variable($1,1), Node_subscript, $3->lnode); freenode($3); } else $$ = node (variable($1,1), Node_subscript, $3); } | '$' non_post_simp_exp { $$ = node ($2, Node_field_spec, (NODE *)NULL); } ; l_brace : '{' opt_nls ; r_brace : '}' opt_nls { yyerrok; } ; r_paren : ')' { yyerrok; } ; opt_semi : /* empty */ | semi ; semi : ';' { yyerrok; want_assign = 0; } ; comma : ',' opt_nls { yyerrok; } ; %% struct token { const char *operator; /* text to match */ NODETYPE value; /* node type */ int class; /* lexical class */ unsigned flags; /* # of args. allowed and compatability */ # define ARGS 0xFF /* 0, 1, 2, 3 args allowed (any combination */ # define A(n) (1<<(n)) # define VERSION 0xFF00 /* old awk is zero */ # define NOT_OLD 0x0100 /* feature not in old awk */ # define NOT_POSIX 0x0200 /* feature not in POSIX */ # define GAWKX 0x0400 /* gawk extension */ NODE *(*ptr) (); /* function that implements this keyword */ }; extern NODE *do_exp(), *do_getline(), *do_index(), *do_length(), *do_sqrt(), *do_log(), *do_sprintf(), *do_substr(), *do_split(), *do_system(), *do_int(), *do_close(), *do_atan2(), *do_sin(), *do_cos(), *do_rand(), *do_srand(), *do_match(), *do_tolower(), *do_toupper(), *do_sub(), *do_gsub(), *do_strftime(), *do_systime(); /* Tokentab is sorted ascii ascending order, so it can be binary searched. */ static struct token tokentab[] = { {"BEGIN", Node_illegal, LEX_BEGIN, 0, 0}, {"END", Node_illegal, LEX_END, 0, 0}, {"atan2", Node_builtin, LEX_BUILTIN, NOT_OLD|A(2), do_atan2}, {"break", Node_K_break, LEX_BREAK, 0, 0}, {"close", Node_builtin, LEX_BUILTIN, NOT_OLD|A(1), do_close}, {"continue", Node_K_continue, LEX_CONTINUE, 0, 0}, {"cos", Node_builtin, LEX_BUILTIN, NOT_OLD|A(1), do_cos}, {"delete", Node_K_delete, LEX_DELETE, NOT_OLD, 0}, {"do", Node_K_do, LEX_DO, NOT_OLD, 0}, {"else", Node_illegal, LEX_ELSE, 0, 0}, {"exit", Node_K_exit, LEX_EXIT, 0, 0}, {"exp", Node_builtin, LEX_BUILTIN, A(1), do_exp}, {"for", Node_K_for, LEX_FOR, 0, 0}, {"func", Node_K_function, LEX_FUNCTION, NOT_POSIX|NOT_OLD, 0}, {"function", Node_K_function, LEX_FUNCTION, NOT_OLD, 0}, {"getline", Node_K_getline, LEX_GETLINE, NOT_OLD, 0}, {"gsub", Node_builtin, LEX_BUILTIN, NOT_OLD|A(2)|A(3), do_gsub}, {"if", Node_K_if, LEX_IF, 0, 0}, {"in", Node_illegal, LEX_IN, 0, 0}, {"index", Node_builtin, LEX_BUILTIN, A(2), do_index}, {"int", Node_builtin, LEX_BUILTIN, A(1), do_int}, {"length", Node_builtin, LEX_LENGTH, A(0)|A(1), do_length}, {"log", Node_builtin, LEX_BUILTIN, A(1), do_log}, {"match", Node_builtin, LEX_BUILTIN, NOT_OLD|A(2), do_match}, {"next", Node_K_next, LEX_NEXT, 0, 0}, {"print", Node_K_print, LEX_PRINT, 0, 0}, {"printf", Node_K_printf, LEX_PRINTF, 0, 0}, {"rand", Node_builtin, LEX_BUILTIN, NOT_OLD|A(0), do_rand}, {"return", Node_K_return, LEX_RETURN, NOT_OLD, 0}, {"sin", Node_builtin, LEX_BUILTIN, NOT_OLD|A(1), do_sin}, {"split", Node_builtin, LEX_BUILTIN, A(2)|A(3), do_split}, {"sprintf", Node_builtin, LEX_BUILTIN, 0, do_sprintf}, {"sqrt", Node_builtin, LEX_BUILTIN, A(1), do_sqrt}, {"srand", Node_builtin, LEX_BUILTIN, NOT_OLD|A(0)|A(1), do_srand}, {"strftime", Node_builtin, LEX_BUILTIN, GAWKX|A(1)|A(2), do_strftime}, {"sub", Node_builtin, LEX_BUILTIN, NOT_OLD|A(2)|A(3), do_sub}, {"substr", Node_builtin, LEX_BUILTIN, A(2)|A(3), do_substr}, {"system", Node_builtin, LEX_BUILTIN, NOT_OLD|A(1), do_system}, {"systime", Node_builtin, LEX_BUILTIN, GAWKX|A(0), do_systime}, {"tolower", Node_builtin, LEX_BUILTIN, NOT_OLD|A(1), do_tolower}, {"toupper", Node_builtin, LEX_BUILTIN, NOT_OLD|A(1), do_toupper}, {"while", Node_K_while, LEX_WHILE, 0, 0}, }; /* VARARGS0 */ static void yyerror(va_alist) va_dcl { va_list args; const char *mesg = NULL; register char *bp, *cp; char *scan; char buf[120]; static char end_of_file_line[] = "(END OF FILE)"; errcount++; /* Find the current line in the input file */ if (lexptr && lexeme) { if (!thisline) { cp = lexeme; if (*cp == '\n') { cp--; mesg = "unexpected newline"; } for ( ; cp != lexptr_begin && *cp != '\n'; --cp) continue; if (*cp == '\n') cp++; thisline = cp; } /* NL isn't guaranteed */ bp = lexeme; while (bp < lexend && *bp && *bp != '\n') bp++; } else { thisline = end_of_file_line; bp = thisline + strlen(thisline); } msg("%.*s", (int) (bp - thisline), thisline); bp = buf; cp = buf + sizeof(buf) - 24; /* 24 more than longest msg. input */ if (lexptr) { scan = thisline; while (bp < cp && scan < lexeme) if (*scan++ == '\t') *bp++ = '\t'; else *bp++ = ' '; *bp++ = '^'; *bp++ = ' '; } va_start(args); if (mesg == NULL) mesg = va_arg(args, char *); strcpy(bp, mesg); err("", buf, args); va_end(args); exit(2); } static char * get_src_buf() { static int samefile = 0; static int nextfile = 0; static char *buf = NULL; static int fd; int n; register char *scan; static int len = 0; static int did_newline = 0; # define SLOP 128 /* enough space to hold most source lines */ again: if (nextfile > numfiles) return NULL; if (srcfiles[nextfile].stype == CMDLINE) { if (len == 0) { len = strlen(srcfiles[nextfile].val); if (len == 0) { /* * Yet Another Special case: * gawk '' /path/name * Sigh. */ ++nextfile; goto again; } sourceline = 1; lexptr = lexptr_begin = srcfiles[nextfile].val; lexend = lexptr + len; } else if (!did_newline && *(lexptr-1) != '\n') { /* * The following goop is to ensure that the source * ends with a newline and that the entire current * line is available for error messages. */ int offset; did_newline = 1; offset = lexptr - lexeme; for (scan = lexeme; scan > lexptr_begin; scan--) if (*scan == '\n') { scan++; break; } len = lexptr - scan; emalloc(buf, char *, len+1, "get_src_buf"); memcpy(buf, scan, len); thisline = buf; lexptr = buf + len; *lexptr = '\n'; lexeme = lexptr - offset; lexptr_begin = buf; lexend = lexptr + 1; } else { len = 0; lexeme = lexptr = lexptr_begin = NULL; } if (lexptr == NULL && ++nextfile <= numfiles) return get_src_buf(); return lexptr; } if (!samefile) { source = srcfiles[nextfile].val; if (source == NULL) { if (buf) { free(buf); buf = NULL; } len = 0; return lexeme = lexptr = lexptr_begin = NULL; } fd = pathopen(source); if (fd == -1) fatal("can't open source file \"%s\" for reading (%s)", source, strerror(errno)); len = optimal_bufsize(fd); if (buf) free(buf); emalloc(buf, char *, len + SLOP, "get_src_buf"); lexptr_begin = buf + SLOP; samefile = 1; sourceline = 1; } else { /* * Here, we retain the current source line (up to length SLOP) * in the beginning of the buffer that was overallocated above */ int offset; int linelen; offset = lexptr - lexeme; for (scan = lexeme; scan > lexptr_begin; scan--) if (*scan == '\n') { scan++; break; } linelen = lexptr - scan; if (linelen > SLOP) linelen = SLOP; thisline = buf + SLOP - linelen; memcpy(thisline, scan, linelen); lexeme = buf + SLOP - offset; lexptr_begin = thisline; } n = read(fd, buf + SLOP, len); if (n == -1) fatal("can't read sourcefile \"%s\" (%s)", source, strerror(errno)); if (n == 0) { samefile = 0; nextfile++; *lexeme = '\0'; len = 0; return get_src_buf(); } lexptr = buf + SLOP; lexend = lexptr + n; return buf; } #define tokadd(x) (*tok++ = (x), tok == tokend ? tokexpand() : tok) char * tokexpand() { static int toksize = 60; int tokoffset; tokoffset = tok - tokstart; toksize *= 2; if (tokstart) erealloc(tokstart, char *, toksize, "tokexpand"); else emalloc(tokstart, char *, toksize, "tokexpand"); tokend = tokstart + toksize; tok = tokstart + tokoffset; return tok; } #if DEBUG char nextc() { if (lexptr && lexptr < lexend) return *lexptr++; else if (get_src_buf()) return *lexptr++; else return '\0'; } #else #define nextc() ((lexptr && lexptr < lexend) ? \ *lexptr++ : \ (get_src_buf() ? *lexptr++ : '\0') \ ) #endif #define pushback() (lexptr && lexptr > lexptr_begin ? lexptr-- : lexptr) /* * Read the input and turn it into tokens. */ static int yylex() { register int c; int seen_e = 0; /* These are for numbers */ int seen_point = 0; int esc_seen; /* for literal strings */ int low, mid, high; static int did_newline = 0; char *tokkey; if (!nextc()) return 0; pushback(); #ifdef OS2 /* * added for OS/2's extproc feature of cmd.exe * (like #! in BSD sh) */ if (strncasecmp(lexptr, "extproc ", 8) == 0) { while (*lexptr && *lexptr != '\n') lexptr++; } #endif lexeme = lexptr; thisline = NULL; if (want_regexp) { int in_brack = 0; want_regexp = 0; tok = tokstart; while ((c = nextc()) != 0) { switch (c) { case '[': in_brack = 1; break; case ']': in_brack = 0; break; case '\\': if ((c = nextc()) == '\0') { yyerror("unterminated regexp ends with \\ at end of file"); } else if (c == '\n') { sourceline++; continue; } else tokadd('\\'); break; case '/': /* end of the regexp */ if (in_brack) break; pushback(); tokadd('\0'); yylval.sval = tokstart; return REGEXP; case '\n': pushback(); yyerror("unterminated regexp"); case '\0': yyerror("unterminated regexp at end of file"); } tokadd(c); } } retry: while ((c = nextc()) == ' ' || c == '\t') continue; lexeme = lexptr ? lexptr - 1 : lexptr; thisline = NULL; tok = tokstart; yylval.nodetypeval = Node_illegal; switch (c) { case 0: return 0; case '\n': sourceline++; return NEWLINE; case '#': /* it's a comment */ while ((c = nextc()) != '\n') { if (c == '\0') return 0; } sourceline++; return NEWLINE; case '\\': #ifdef RELAXED_CONTINUATION /* * This code puports to allow comments and/or whitespace * after the `\' at the end of a line used for continuation. * Use it at your own risk. We think it's a bad idea, which * is why it's not on by default. */ if (!do_unix) { /* strip trailing white-space and/or comment */ while ((c = nextc()) == ' ' || c == '\t') continue; if (c == '#') while ((c = nextc()) != '\n') if (c == '\0') break; pushback(); } #endif /* RELAXED_CONTINUATION */ if (nextc() == '\n') { sourceline++; goto retry; } else yyerror("backslash not last character on line"); break; case '$': want_assign = 1; return '$'; case ')': case ']': case '(': case '[': case ';': case ':': case '?': case '{': case ',': return c; case '*': if ((c = nextc()) == '=') { yylval.nodetypeval = Node_assign_times; return ASSIGNOP; } else if (do_posix) { pushback(); return '*'; } else if (c == '*') { /* make ** and **= aliases for ^ and ^= */ static int did_warn_op = 0, did_warn_assgn = 0; if (nextc() == '=') { if (do_lint && ! did_warn_assgn) { did_warn_assgn = 1; warning("**= is not allowed by POSIX"); } yylval.nodetypeval = Node_assign_exp; return ASSIGNOP; } else { pushback(); if (do_lint && ! did_warn_op) { did_warn_op = 1; warning("** is not allowed by POSIX"); } return '^'; } } pushback(); return '*'; case '/': if (want_assign) { if (nextc() == '=') { yylval.nodetypeval = Node_assign_quotient; return ASSIGNOP; } pushback(); } return '/'; case '%': if (nextc() == '=') { yylval.nodetypeval = Node_assign_mod; return ASSIGNOP; } pushback(); return '%'; case '^': { static int did_warn_op = 0, did_warn_assgn = 0; if (nextc() == '=') { if (do_lint && ! did_warn_assgn) { did_warn_assgn = 1; warning("operator `^=' is not supported in old awk"); } yylval.nodetypeval = Node_assign_exp; return ASSIGNOP; } pushback(); if (do_lint && ! did_warn_op) { did_warn_op = 1; warning("operator `^' is not supported in old awk"); } return '^'; } case '+': if ((c = nextc()) == '=') { yylval.nodetypeval = Node_assign_plus; return ASSIGNOP; } if (c == '+') return INCREMENT; pushback(); return '+'; case '!': if ((c = nextc()) == '=') { yylval.nodetypeval = Node_notequal; return RELOP; } if (c == '~') { yylval.nodetypeval = Node_nomatch; want_assign = 0; return MATCHOP; } pushback(); return '!'; case '<': if (nextc() == '=') { yylval.nodetypeval = Node_leq; return RELOP; } yylval.nodetypeval = Node_less; pushback(); return '<'; case '=': if (nextc() == '=') { yylval.nodetypeval = Node_equal; return RELOP; } yylval.nodetypeval = Node_assign; pushback(); return ASSIGNOP; case '>': if ((c = nextc()) == '=') { yylval.nodetypeval = Node_geq; return RELOP; } else if (c == '>') { yylval.nodetypeval = Node_redirect_append; return APPEND_OP; } yylval.nodetypeval = Node_greater; pushback(); return '>'; case '~': yylval.nodetypeval = Node_match; want_assign = 0; return MATCHOP; case '}': /* * Added did newline stuff. Easier than * hacking the grammar */ if (did_newline) { did_newline = 0; return c; } did_newline++; --lexptr; /* pick up } next time */ return NEWLINE; case '"': esc_seen = 0; while ((c = nextc()) != '"') { if (c == '\n') { pushback(); yyerror("unterminated string"); } if (c == '\\') { c = nextc(); if (c == '\n') { sourceline++; continue; } esc_seen = 1; tokadd('\\'); } if (c == '\0') { pushback(); yyerror("unterminated string"); } tokadd(c); } yylval.nodeval = make_str_node(tokstart, tok - tokstart, esc_seen ? SCAN : 0); yylval.nodeval->flags |= PERM; return YSTRING; case '-': if ((c = nextc()) == '=') { yylval.nodetypeval = Node_assign_minus; return ASSIGNOP; } if (c == '-') return DECREMENT; pushback(); return '-'; case '.': c = nextc(); pushback(); if (!isdigit(c)) return '.'; else c = '.'; /* FALL THROUGH */ case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': /* It's a number */ for (;;) { int gotnumber = 0; tokadd(c); switch (c) { case '.': if (seen_point) { gotnumber++; break; } ++seen_point; break; case 'e': case 'E': if (seen_e) { gotnumber++; break; } ++seen_e; if ((c = nextc()) == '-' || c == '+') tokadd(c); else pushback(); break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': break; default: gotnumber++; } if (gotnumber) break; c = nextc(); } pushback(); yylval.nodeval = make_number(atof(tokstart)); yylval.nodeval->flags |= PERM; return YNUMBER; case '&': if ((c = nextc()) == '&') { yylval.nodetypeval = Node_and; for (;;) { c = nextc(); if (c == '\0') break; if (c == '#') { while ((c = nextc()) != '\n' && c != '\0') continue; if (c == '\0') break; } if (c == '\n') sourceline++; if (! isspace(c)) { pushback(); break; } } want_assign = 0; return LEX_AND; } pushback(); return '&'; case '|': if ((c = nextc()) == '|') { yylval.nodetypeval = Node_or; for (;;) { c = nextc(); if (c == '\0') break; if (c == '#') { while ((c = nextc()) != '\n' && c != '\0') continue; if (c == '\0') break; } if (c == '\n') sourceline++; if (! isspace(c)) { pushback(); break; } } want_assign = 0; return LEX_OR; } pushback(); return '|'; } if (c != '_' && ! isalpha(c)) yyerror("Invalid char '%c' in expression\n", c); /* it's some type of name-type-thing. Find its length */ tok = tokstart; while (is_identchar(c)) { tokadd(c); c = nextc(); } tokadd('\0'); emalloc(tokkey, char *, tok - tokstart, "yylex"); memcpy(tokkey, tokstart, tok - tokstart); pushback(); /* See if it is a special token. */ low = 0; high = (sizeof (tokentab) / sizeof (tokentab[0])) - 1; while (low <= high) { int i/* , c */; mid = (low + high) / 2; c = *tokstart - tokentab[mid].operator[0]; i = c ? c : strcmp (tokstart, tokentab[mid].operator); if (i < 0) { /* token < mid */ high = mid - 1; } else if (i > 0) { /* token > mid */ low = mid + 1; } else { if (do_lint) { if (tokentab[mid].flags & GAWKX) warning("%s() is a gawk extension", tokentab[mid].operator); if (tokentab[mid].flags & NOT_POSIX) warning("POSIX does not allow %s", tokentab[mid].operator); if (tokentab[mid].flags & NOT_OLD) warning("%s is not supported in old awk", tokentab[mid].operator); } if ((do_unix && (tokentab[mid].flags & GAWKX)) || (do_posix && (tokentab[mid].flags & NOT_POSIX))) break; if (tokentab[mid].class == LEX_BUILTIN || tokentab[mid].class == LEX_LENGTH ) yylval.lval = mid; else yylval.nodetypeval = tokentab[mid].value; free(tokkey); return tokentab[mid].class; } } yylval.sval = tokkey; if (*lexptr == '(') return FUNC_CALL; else { want_assign = 1; return NAME; } } static NODE * node_common(op) NODETYPE op; { register NODE *r; getnode(r); r->type = op; r->flags = MALLOC; /* if lookahead is NL, lineno is 1 too high */ if (lexeme && *lexeme == '\n') r->source_line = sourceline - 1; else r->source_line = sourceline; r->source_file = source; return r; } /* * This allocates a node with defined lnode and rnode. */ NODE * node(left, op, right) NODE *left, *right; NODETYPE op; { register NODE *r; r = node_common(op); r->lnode = left; r->rnode = right; return r; } /* * This allocates a node with defined subnode and proc for builtin functions * Checks for arg. count and supplies defaults where possible. */ static NODE * snode(subn, op, idx) NODETYPE op; int idx; NODE *subn; { register NODE *r; register NODE *n; int nexp = 0; int args_allowed; r = node_common(op); /* traverse expression list to see how many args. given */ for (n= subn; n; n= n->rnode) { nexp++; if (nexp > 3) break; } /* check against how many args. are allowed for this builtin */ args_allowed = tokentab[idx].flags & ARGS; if (args_allowed && !(args_allowed & A(nexp))) fatal("%s() cannot have %d argument%c", tokentab[idx].operator, nexp, nexp == 1 ? ' ' : 's'); r->proc = tokentab[idx].ptr; /* special case processing for a few builtins */ if (nexp == 0 && r->proc == do_length) { subn = node(node(make_number(0.0),Node_field_spec,(NODE *)NULL), Node_expression_list, (NODE *) NULL); } else if (r->proc == do_match) { if (subn->rnode->lnode->type != Node_regex) subn->rnode->lnode = mk_rexp(subn->rnode->lnode); } else if (r->proc == do_sub || r->proc == do_gsub) { if (subn->lnode->type != Node_regex) subn->lnode = mk_rexp(subn->lnode); if (nexp == 2) append_right(subn, node(node(make_number(0.0), Node_field_spec, (NODE *) NULL), Node_expression_list, (NODE *) NULL)); else if (do_lint && subn->rnode->rnode->lnode->type == Node_val) warning("string literal as last arg of substitute"); } else if (r->proc == do_split) { if (nexp == 2) append_right(subn, node(FS_node, Node_expression_list, (NODE *) NULL)); n = subn->rnode->rnode->lnode; if (n->type != Node_regex) subn->rnode->rnode->lnode = mk_rexp(n); if (nexp == 2) subn->rnode->rnode->lnode->re_flags |= FS_DFLT; } r->subnode = subn; return r; } /* * This allocates a Node_line_range node with defined condpair and * zeroes the trigger word to avoid the temptation of assuming that calling * 'node( foo, Node_line_range, 0)' will properly initialize 'triggered'. */ /* Otherwise like node() */ static NODE * mkrangenode(cpair) NODE *cpair; { register NODE *r; getnode(r); r->type = Node_line_range; r->condpair = cpair; r->triggered = 0; return r; } /* Build a for loop */ static NODE * make_for_loop(init, cond, incr) NODE *init, *cond, *incr; { register FOR_LOOP_HEADER *r; NODE *n; emalloc(r, FOR_LOOP_HEADER *, sizeof(FOR_LOOP_HEADER), "make_for_loop"); getnode(n); n->type = Node_illegal; r->init = init; r->cond = cond; r->incr = incr; n->sub.nodep.r.hd = r; return n; } /* * Install a name in the symbol table, even if it is already there. * Caller must check against redefinition if that is desired. */ NODE * install(name, value) char *name; NODE *value; { register NODE *hp; register size_t len; register int bucket; len = strlen(name); bucket = hash(name, len, (unsigned long) HASHSIZE); getnode(hp); hp->type = Node_hashnode; hp->hnext = variables[bucket]; variables[bucket] = hp; hp->hlength = len; hp->hvalue = value; hp->hname = name; hp->hvalue->vname = name; return hp->hvalue; } /* find the most recent hash node for name installed by install */ NODE * lookup(name) const char *name; { register NODE *bucket; register size_t len; len = strlen(name); bucket = variables[hash(name, len, (unsigned long) HASHSIZE)]; while (bucket) { if (bucket->hlength == len && STREQN(bucket->hname, name, len)) return bucket->hvalue; bucket = bucket->hnext; } return NULL; } /* * Add new to the rightmost branch of LIST. This uses n^2 time, so we make * a simple attempt at optimizing it. */ static NODE * append_right(list, new) NODE *list, *new; { register NODE *oldlist; static NODE *savefront = NULL, *savetail = NULL; oldlist = list; if (savefront == oldlist) { savetail = savetail->rnode = new; return oldlist; } else savefront = oldlist; while (list->rnode != NULL) list = list->rnode; savetail = list->rnode = new; return oldlist; } /* * check if name is already installed; if so, it had better have Null value, * in which case def is added as the value. Otherwise, install name with def * as value. */ static void func_install(params, def) NODE *params; NODE *def; { NODE *r; pop_params(params->rnode); pop_var(params, 0); r = lookup(params->param); if (r != NULL) { fatal("function name `%s' previously defined", params->param); } else (void) install(params->param, node(params, Node_func, def)); } static void pop_var(np, freeit) NODE *np; int freeit; { register NODE *bucket, **save; register size_t len; char *name; name = np->param; len = strlen(name); save = &(variables[hash(name, len, (unsigned long) HASHSIZE)]); for (bucket = *save; bucket; bucket = bucket->hnext) { if (len == bucket->hlength && STREQN(bucket->hname, name, len)) { *save = bucket->hnext; freenode(bucket); if (freeit) free(np->param); return; } save = &(bucket->hnext); } } static void pop_params(params) NODE *params; { register NODE *np; for (np = params; np != NULL; np = np->rnode) pop_var(np, 1); } static NODE * make_param(name) char *name; { NODE *r; getnode(r); r->type = Node_param_list; r->rnode = NULL; r->param = name; r->param_cnt = param_counter++; return (install(name, r)); } /* Name points to a variable name. Make sure its in the symbol table */ NODE * variable(name, can_free) char *name; int can_free; { register NODE *r; static int env_loaded = 0; if (!env_loaded && STREQ(name, "ENVIRON")) { load_environ(); env_loaded = 1; } if ((r = lookup(name)) == NULL) r = install(name, node(Nnull_string, Node_var, (NODE *) NULL)); else if (can_free) free(name); return r; } static NODE * mk_rexp(exp) NODE *exp; { if (exp->type == Node_regex) return exp; else { NODE *n; getnode(n); n->type = Node_regex; n->re_exp = exp; n->re_text = NULL; n->re_reg = NULL; n->re_flags = 0; n->re_cnt = 1; return n; } }