Formula and examples obtained from "How to Calculate alt/az: SAAO" at http://www.saao.ac.za/public-info/sun-moon-stars/sun-index/how-to-calculate-altaz/ examples- (a) Cape Town Feb 15 10:30 1995 (b) Bloemfontein May 20 13:35 1996 (c) Johannesburg Sept 25 16:45 1997 (1) find Y, the year minus 1900: (a) Y = 95 (b) 96 (c) 97 (2) find Z(J) from this table: Jan J= 1 Z(J)= -0.5* Jul J= 7 Z(J) = 180.5 Feb 2 30.5* Aug 8 211.5 Mar 3 58.5 Sep 9 242.5 Apr 4 89.5 Oct 10 272.5 May 5 119.5 Nov 11 303.5 Jun 6 150.5 Dec 12 333.5 (* reduce by one for a leap year) (a) Z(J) = 30.5 (b) 119.5 (c) 242.5 (3) find D the number of days from this formula: D = integer(365.25 x Y) + Z(J) + K + UT/24 where K is the day of the month and UT is the universal time (a) D = int(365.25 x 95) + 30.5 + 15 + 8.500/24 = 34743.854 (b) int(365.25 x 96) + 119.5 + 20 + 11.583/24 = 35203.983 (c) int(365.25 x 97) + 242.5 + 25 + 14.750/24 = 35697.115 (4) find T the fraction of a julian century from this formula: T = D/36525 (a) T = 0.9512349 (b) 0.9638325 (c) 0.9773337 (5) find L the mean longitude of the sun from this formula: L = 279.697 + 36000.769 x T (a) L = 34524.885 => 324.885 (removing multiples of 360 degrees) (b) 34978.408 => 58.408 (c) 35464.462 => 184.462 (6) find M the mean anomaly of the sun from this formula: M = 358.476 + 35999.050 x T (a) M = 34602.029 => 42.029 (removing multiples of 360 degrees) (b) 35055.530 => 135.530 (c) 35541.561 => 261.561 (7) find epsilon the obliquity from this formula: epsilon = 23.452 - 0.013 x T (a) epsilon = 23.4396 (b) 23.4395 (c) 23.4393 (8) find lambda the ecliptic longitude of the sun from this formula: lambda = L + (1.919 - 0.005 x T) x sin(M) + 0.020 x sin(2M) (a) lambda = 324.885 + 1.9142 x 0.6695 + 0.020 x 0.9946 = 326.186 (b) 58.408 + 1.9142 x 0.7005 + 0.020 x -0.9998 = 59.729 (c) 184.462 + 1.9141 x -0.9892 + 0.020 x 0.2903 = 182.574 (9) find alpha the right ascension of the sun from this formula: alpha = arctan (tan(lambda) x cos(epsilon)) in same quadrant as lambda (a) alpha = 328.428 (b) 57.537 (c) 182.362 (10) find delta the declination of the sun from this formula: delta = arcsin (sin(lambda) x sin(epsilon)) (a) DEC = -12.789 (b) 20.093 (c) -1.024 (11) to proceed you need to know LONG the east-longitude of your location: east-longitude latitude Windhoek 17.10 -22.57 Cape Town 18.37 -33.92 P.E. 25.67 -33.97 Bloemfontein 26.12 -29.20 Johannesburg 28.00 -26.25 Durban 30.93 -29.92 (12) find HA the hour angle of the sun from this formula: HA = L - alpha + 180 + 15 x UT + LONG (a) HA = 324.885 - 328.428 + 180 + 15 x 8.500 + 18.37 = -37.673 (b) 58.408 - 57.537 + 180 + 15 x 11.583 + 26.12 = 20.736 (c) 184.462 - 182.362 + 180 + 15 x 14.750 + 28.00 = 71.350 (13) find the altitude of the center of the sun ALT from this formula: ALT [degrees] = ARCSIN [ SIN(LAT) x SIN(DEC) + COS(LAT) x COS(DEC) x COS(HA) ] (a) ALT = ARCSIN ( -.5580 x -.2214 + .8298 x .9752 x .7915 ) = 49.822 (b) ALT = ARCSIN ( -.4879 x .3435 + .8729 x .9391 x .9352 ) = 36.800 (c) ALT = ARCSIN ( -.4423 x -.0182 + .8969 x .9998 x .3198 ) = 17.147 (14) find the azimuth of the sun AZ from this formula: AZ [degrees] = ARCTAN [ SIN(HA) / (COS(HA) x SIN(LAT) - TAN(DEC) x COS(LAT)) ] (a) AZ = ARCTAN [ -.6112/ ( .7915 x -.5580 - -.2270 x .8298 ) ] = ARCTAN ( 2.4130 ) = 67.49 {i.e. east of true north} (b) AZ = ARCTAN [ .3541/ ( .9352 x -.4879 - .3658 x .8729 ) ] = ARCTAN ( -0.45656 ) = -24.54 = 335.46 {i.e. west of true north} (c) AZ = ARCTAN [ .9475/ ( .3198 x -.4423 - -.01787 x .8969 ) ] = ARCTAN ( -7.5546 ) = -82.46 = 277.54 {i.e. west of true north} COMPARISON WITH COMPUTER ALMANAC PROGRAM rough calculation here computer almanac calculation difference (a) alt = 49.8, az = 67.5 ALT = 49.8, AZ = 67.5 none (b) alt = 36.8, az = 335.5 ALT = 36.8, AZ = 335.5 none (c) alt = 17.1, az = 277.5 ALT = 17.1, AZ = 277.5 none