//===- lib/ReaderWriter/ELF/Hexagon/HexagonTargetHandler.cpp --------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "HexagonExecutableWriter.h" #include "HexagonDynamicLibraryWriter.h" #include "HexagonLinkingContext.h" #include "HexagonTargetHandler.h" using namespace lld; using namespace elf; using namespace llvm::ELF; using llvm::makeArrayRef; HexagonTargetHandler::HexagonTargetHandler(HexagonLinkingContext &context) : _hexagonLinkingContext(context), _hexagonRuntimeFile(new HexagonRuntimeFile(context)), _hexagonTargetLayout(new HexagonTargetLayout(context)), _hexagonRelocationHandler(new HexagonTargetRelocationHandler( *_hexagonTargetLayout.get())) {} std::unique_ptr HexagonTargetHandler::getWriter() { switch (_hexagonLinkingContext.getOutputELFType()) { case llvm::ELF::ET_EXEC: return std::unique_ptr( new elf::HexagonExecutableWriter( _hexagonLinkingContext, *_hexagonTargetLayout.get())); case llvm::ELF::ET_DYN: return std::unique_ptr( new elf::HexagonDynamicLibraryWriter( _hexagonLinkingContext, *_hexagonTargetLayout.get())); case llvm::ELF::ET_REL: llvm_unreachable("TODO: support -r mode"); default: llvm_unreachable("unsupported output type"); } } using namespace llvm::ELF; // .got atom const uint8_t hexagonGotAtomContent[4] = { 0 }; // .got.plt atom (entry 0) const uint8_t hexagonGotPlt0AtomContent[16] = { 0 }; // .got.plt atom (all other entries) const uint8_t hexagonGotPltAtomContent[4] = { 0 }; // .plt (entry 0) const uint8_t hexagonPlt0AtomContent[28] = { 0x00, 0x40, 0x00, 0x00, // { immext (#0) 0x1c, 0xc0, 0x49, 0x6a, // r28 = add (pc, ##GOT0@PCREL) } # address of GOT0 0x0e, 0x42, 0x9c, 0xe2, // { r14 -= add (r28, #16) # offset of GOTn from GOTa 0x4f, 0x40, 0x9c, 0x91, // r15 = memw (r28 + #8) # object ID at GOT2 0x3c, 0xc0, 0x9c, 0x91, // r28 = memw (r28 + #4) }# dynamic link at GOT1 0x0e, 0x42, 0x0e, 0x8c, // { r14 = asr (r14, #2) # index of PLTn 0x00, 0xc0, 0x9c, 0x52, // jumpr r28 } # call dynamic linker }; // .plt (other entries) const uint8_t hexagonPltAtomContent[16] = { 0x00, 0x40, 0x00, 0x00, // { immext (#0) 0x0e, 0xc0, 0x49, 0x6a, // r14 = add (pc, ##GOTn@PCREL) } # address of GOTn 0x1c, 0xc0, 0x8e, 0x91, // r28 = memw (r14) # contents of GOTn 0x00, 0xc0, 0x9c, 0x52, // jumpr r28 # call it }; class HexagonGOTAtom : public GOTAtom { public: HexagonGOTAtom(const File &f) : GOTAtom(f, ".got") {} ArrayRef rawContent() const override { return makeArrayRef(hexagonGotAtomContent); } Alignment alignment() const override { return Alignment(2); } }; class HexagonGOTPLTAtom : public GOTAtom { public: HexagonGOTPLTAtom(const File &f) : GOTAtom(f, ".got.plt") {} ArrayRef rawContent() const override { return makeArrayRef(hexagonGotPltAtomContent); } Alignment alignment() const override { return Alignment(2); } }; class HexagonGOTPLT0Atom : public GOTAtom { public: HexagonGOTPLT0Atom(const File &f) : GOTAtom(f, ".got.plt") {} ArrayRef rawContent() const override { return makeArrayRef(hexagonGotPlt0AtomContent); } Alignment alignment() const override { return Alignment(3); } }; class HexagonPLT0Atom : public PLT0Atom { public: HexagonPLT0Atom(const File &f) : PLT0Atom(f) {} ArrayRef rawContent() const override { return makeArrayRef(hexagonPlt0AtomContent); } }; class HexagonPLTAtom : public PLTAtom { public: HexagonPLTAtom(const File &f, StringRef secName) : PLTAtom(f, secName) {} ArrayRef rawContent() const override { return makeArrayRef(hexagonPltAtomContent); } }; class ELFPassFile : public SimpleFile { public: ELFPassFile(const ELFLinkingContext &eti) : SimpleFile("ELFPassFile") { setOrdinal(eti.getNextOrdinalAndIncrement()); } llvm::BumpPtrAllocator _alloc; }; /// \brief Create GOT and PLT entries for relocations. Handles standard GOT/PLT template class GOTPLTPass : public Pass { /// \brief Handle a specific reference. void handleReference(const DefinedAtom &atom, const Reference &ref) { if (ref.kindNamespace() != Reference::KindNamespace::ELF) return; assert(ref.kindArch() == Reference::KindArch::Hexagon); switch (ref.kindValue()) { case R_HEX_PLT_B22_PCREL: case R_HEX_B22_PCREL: static_cast(this)->handlePLT32(ref); break; case R_HEX_GOT_LO16: case R_HEX_GOT_HI16: case R_HEX_GOT_32_6_X: case R_HEX_GOT_16_X: case R_HEX_GOT_11_X: static_cast(this)->handleGOTREL(ref); break; } } protected: /// \brief Create a GOT entry containing 0. const GOTAtom *getNullGOT() { if (!_null) { _null = new (_file._alloc) HexagonGOTPLTAtom(_file); #ifndef NDEBUG _null->_name = "__got_null"; #endif } return _null; } public: GOTPLTPass(const ELFLinkingContext &ctx) : _file(ctx), _null(nullptr), _PLT0(nullptr), _got0(nullptr) {} /// \brief Do the pass. /// /// The goal here is to first process each reference individually. Each call /// to handleReference may modify the reference itself and/or create new /// atoms which must be stored in one of the maps below. /// /// After all references are handled, the atoms created during that are all /// added to mf. void perform(std::unique_ptr &mf) override { // Process all references. for (const auto &atom : mf->defined()) for (const auto &ref : *atom) handleReference(*atom, *ref); // Add all created atoms to the link. uint64_t ordinal = 0; if (_PLT0) { _PLT0->setOrdinal(ordinal++); mf->addAtom(*_PLT0); } for (auto &plt : _pltVector) { plt->setOrdinal(ordinal++); mf->addAtom(*plt); } if (_null) { _null->setOrdinal(ordinal++); mf->addAtom(*_null); } if (_got0) { _got0->setOrdinal(ordinal++); mf->addAtom(*_got0); } for (auto &got : _gotVector) { got->setOrdinal(ordinal++); mf->addAtom(*got); } } protected: /// \brief Owner of all the Atoms created by this pass. ELFPassFile _file; /// \brief Map Atoms to their GOT entries. llvm::DenseMap _gotMap; /// \brief Map Atoms to their PLT entries. llvm::DenseMap _pltMap; /// \brief the list of GOT/PLT atoms std::vector _gotVector; std::vector _pltVector; /// \brief GOT entry that is always 0. Used for undefined weaks. GOTAtom *_null; /// \brief The got and plt entries for .PLT0. This is used to call into the /// dynamic linker for symbol resolution. /// @{ PLT0Atom *_PLT0; GOTAtom *_got0; /// @} }; class DynamicGOTPLTPass final : public GOTPLTPass { public: DynamicGOTPLTPass(const elf::HexagonLinkingContext &ctx) : GOTPLTPass(ctx) { _got0 = new (_file._alloc) HexagonGOTPLT0Atom(_file); #ifndef NDEBUG _got0->_name = "__got0"; #endif } const PLT0Atom *getPLT0() { if (_PLT0) return _PLT0; _PLT0 = new (_file._alloc) HexagonPLT0Atom(_file); _PLT0->addReferenceELF_Hexagon(R_HEX_B32_PCREL_X, 0, _got0, 0); _PLT0->addReferenceELF_Hexagon(R_HEX_6_PCREL_X, 4, _got0, 4); DEBUG_WITH_TYPE("PLT", llvm::dbgs() << "[ PLT0/GOT0 ] " << "Adding plt0/got0 \n"); return _PLT0; } const PLTAtom *getPLTEntry(const Atom *a) { auto plt = _pltMap.find(a); if (plt != _pltMap.end()) return plt->second; auto ga = new (_file._alloc) HexagonGOTPLTAtom(_file); ga->addReferenceELF_Hexagon(R_HEX_JMP_SLOT, 0, a, 0); auto pa = new (_file._alloc) HexagonPLTAtom(_file, ".plt"); pa->addReferenceELF_Hexagon(R_HEX_B32_PCREL_X, 0, ga, 0); pa->addReferenceELF_Hexagon(R_HEX_6_PCREL_X, 4, ga, 4); // Point the got entry to the PLT0 atom initially ga->addReferenceELF_Hexagon(R_HEX_32, 0, getPLT0(), 0); #ifndef NDEBUG ga->_name = "__got_"; ga->_name += a->name(); pa->_name = "__plt_"; pa->_name += a->name(); DEBUG_WITH_TYPE("PLT", llvm::dbgs() << "[" << a->name() << "] " << "Adding plt/got: " << pa->_name << "/" << ga->_name << "\n"); #endif _gotMap[a] = ga; _pltMap[a] = pa; _gotVector.push_back(ga); _pltVector.push_back(pa); return pa; } const GOTAtom *getGOTEntry(const Atom *a) { auto got = _gotMap.find(a); if (got != _gotMap.end()) return got->second; auto ga = new (_file._alloc) HexagonGOTAtom(_file); ga->addReferenceELF_Hexagon(R_HEX_GLOB_DAT, 0, a, 0); #ifndef NDEBUG ga->_name = "__got_"; ga->_name += a->name(); DEBUG_WITH_TYPE("GOT", llvm::dbgs() << "[" << a->name() << "] " << "Adding got: " << ga->_name << "\n"); #endif _gotMap[a] = ga; _gotVector.push_back(ga); return ga; } std::error_code handleGOTREL(const Reference &ref) { // Turn this so that the target is set to the GOT entry const_cast(ref).setTarget(getGOTEntry(ref.target())); return std::error_code(); } std::error_code handlePLT32(const Reference &ref) { // Turn this into a PC32 to the PLT entry. assert(ref.kindNamespace() == Reference::KindNamespace::ELF); assert(ref.kindArch() == Reference::KindArch::Hexagon); const_cast(ref).setKindValue(R_HEX_B22_PCREL); const_cast(ref).setTarget(getPLTEntry(ref.target())); return std::error_code(); } }; void elf::HexagonLinkingContext::addPasses(PassManager &pm) { if (isDynamic()) pm.add(llvm::make_unique(*this)); ELFLinkingContext::addPasses(pm); } void HexagonTargetHandler::registerRelocationNames(Registry ®istry) { registry.addKindTable(Reference::KindNamespace::ELF, Reference::KindArch::Hexagon, kindStrings); } #define ELF_RELOC(name, value) LLD_KIND_STRING_ENTRY(name), const Registry::KindStrings HexagonTargetHandler::kindStrings[] = { #include "llvm/Support/ELFRelocs/Hexagon.def" LLD_KIND_STRING_END }; #undef ELF_RELOC