/*- * Copyright 2003-2011 Netlogic Microsystems (Netlogic). All rights * reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY Netlogic Microsystems ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * NETLOGIC_BSD */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_platform.h" #include #include #include #include #include #include #include #include #include #include #include #include /* cinit() */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef FDT #include #include #endif /* 4KB static data aread to keep a copy of the bootload env until the dynamic kenv is setup */ char boot1_env[4096]; uint64_t xlp_cpu_frequency; uint64_t xlp_io_base = MIPS_PHYS_TO_DIRECT_UNCACHED(XLP_DEFAULT_IO_BASE); int xlp_ncores; int xlp_threads_per_core; uint32_t xlp_hw_thread_mask; int xlp_cpuid_to_hwtid[MAXCPU]; int xlp_hwtid_to_cpuid[MAXCPU]; uint64_t xlp_pic_base; static int xlp_mmuval; extern uint32_t _end; extern char XLPResetEntry[], XLPResetEntryEnd[]; static void xlp_setup_core(void) { uint64_t reg; reg = nlm_mfcr(LSU_DEFEATURE); /* Enable Unaligned and L2HPE */ reg |= (1 << 30) | (1 << 23); /* * Experimental : Enable SUE * Speculative Unmap Enable. Enable speculative L2 cache request for * unmapped access. */ reg |= (1ull << 31); /* Clear S1RCM - A0 errata */ reg &= ~0xeull; nlm_mtcr(LSU_DEFEATURE, reg); reg = nlm_mfcr(SCHED_DEFEATURE); /* Experimental: Disable BRU accepting ALU ops - A0 errata */ reg |= (1 << 24); nlm_mtcr(SCHED_DEFEATURE, reg); } static void xlp_setup_mmu(void) { uint32_t pagegrain; if (nlm_threadid() == 0) { nlm_setup_extended_pagemask(0); nlm_large_variable_tlb_en(1); nlm_extended_tlb_en(1); nlm_mmu_setup(0, 0, 0); } /* Enable no-read, no-exec, large-physical-address */ pagegrain = mips_rd_pagegrain(); pagegrain |= (1 << 31) | /* RIE */ (1 << 30) | /* XIE */ (1 << 29); /* ELPA */ mips_wr_pagegrain(pagegrain); } static void xlp_parse_mmu_options(void) { uint64_t sysbase; uint32_t cpu_map = xlp_hw_thread_mask; uint32_t core0_thr_mask, core_thr_mask, cpu_rst_mask; int i, j, k; #ifdef SMP if (cpu_map == 0) cpu_map = 0xffffffff; #else /* Uniprocessor! */ if (cpu_map == 0) cpu_map = 0x1; else if (cpu_map != 0x1) { printf("WARNING: Starting uniprocessor kernel on cpumask [0x%lx]!\n" "WARNING: Other CPUs will be unused.\n", (u_long)cpu_map); cpu_map = 0x1; } #endif xlp_ncores = 1; core0_thr_mask = cpu_map & 0xf; switch (core0_thr_mask) { case 1: xlp_threads_per_core = 1; xlp_mmuval = 0; break; case 3: xlp_threads_per_core = 2; xlp_mmuval = 2; break; case 0xf: xlp_threads_per_core = 4; xlp_mmuval = 3; break; default: goto unsupp; } /* Try to find the enabled cores from SYS block */ sysbase = nlm_get_sys_regbase(0); cpu_rst_mask = nlm_read_sys_reg(sysbase, SYS_CPU_RESET) & 0xff; /* XLP 416 does not report this correctly, fix */ if (nlm_processor_id() == CHIP_PROCESSOR_ID_XLP_416) cpu_rst_mask = 0xe; /* Take out cores which do not exist on chip */ for (i = 1; i < XLP_MAX_CORES; i++) { if ((cpu_rst_mask & (1 << i)) == 0) cpu_map &= ~(0xfu << (4 * i)); } /* Verify other cores' CPU masks */ for (i = 1; i < XLP_MAX_CORES; i++) { core_thr_mask = (cpu_map >> (4 * i)) & 0xf; if (core_thr_mask == 0) continue; if (core_thr_mask != core0_thr_mask) goto unsupp; xlp_ncores++; } xlp_hw_thread_mask = cpu_map; /* setup hardware processor id to cpu id mapping */ for (i = 0; i< MAXCPU; i++) xlp_cpuid_to_hwtid[i] = xlp_hwtid_to_cpuid[i] = -1; for (i = 0, k = 0; i < XLP_MAX_CORES; i++) { if (((cpu_map >> (i * 4)) & 0xf) == 0) continue; for (j = 0; j < xlp_threads_per_core; j++) { xlp_cpuid_to_hwtid[k] = i * 4 + j; xlp_hwtid_to_cpuid[i * 4 + j] = k; k++; } } return; unsupp: printf("ERROR : Unsupported CPU mask [use 1,2 or 4 threads per core].\n" "\tcore0 thread mask [%lx], boot cpu mask [%lx].\n", (u_long)core0_thr_mask, (u_long)cpu_map); panic("Invalid CPU mask - halting.\n"); return; } /* Parse cmd line args as env - copied from ar71xx */ static void xlp_parse_bootargs(char *cmdline) { char *n, *v; while ((v = strsep(&cmdline, " \n")) != NULL) { if (*v == '\0') continue; if (*v == '-') { while (*v != '\0') { v++; switch (*v) { case 'a': boothowto |= RB_ASKNAME; break; case 'd': boothowto |= RB_KDB; break; case 'g': boothowto |= RB_GDB; break; case 's': boothowto |= RB_SINGLE; break; case 'v': boothowto |= RB_VERBOSE; break; } } } else { n = strsep(&v, "="); if (v == NULL) setenv(n, "1"); else setenv(n, v); } } } #ifdef FDT static void xlp_bootargs_init(__register_t arg) { char buf[2048]; /* early stack is big enough */ void *dtbp; phandle_t chosen; ihandle_t mask; dtbp = (void *)(intptr_t)arg; #if defined(FDT_DTB_STATIC) /* * In case the device tree blob was not passed as argument try * to use the statically embedded one. */ if (dtbp == NULL) dtbp = &fdt_static_dtb; #endif if (OF_install(OFW_FDT, 0) == FALSE) while (1); if (OF_init((void *)dtbp) != 0) while (1); if (fdt_immr_addr(xlp_io_base) != 0) while (1); OF_interpret("perform-fixup", 0); chosen = OF_finddevice("/chosen"); if (OF_getprop(chosen, "cpumask", &mask, sizeof(mask)) != -1) { xlp_hw_thread_mask = mask; } if (OF_getprop(chosen, "bootargs", buf, sizeof(buf)) != -1) xlp_parse_bootargs(buf); } #else /* * arg is a pointer to the environment block, the format of the block is * a=xyz\0b=pqr\0\0 */ static void xlp_bootargs_init(__register_t arg) { char buf[2048]; /* early stack is big enough */ char *p, *v, *n; uint32_t mask; /* * provide backward compat for passing cpu mask as arg */ if (arg & 1) { xlp_hw_thread_mask = arg; return; } p = (void *)(intptr_t)arg; while (*p != '\0') { strlcpy(buf, p, sizeof(buf)); v = buf; n = strsep(&v, "="); if (v == NULL) setenv(n, "1"); else setenv(n, v); p += strlen(p) + 1; } /* CPU mask can be passed thru env */ if (getenv_uint("cpumask", &mask) != 0) xlp_hw_thread_mask = mask; /* command line argument */ v = getenv("bootargs"); if (v != NULL) { strlcpy(buf, v, sizeof(buf)); xlp_parse_bootargs(buf); freeenv(v); } } #endif static void mips_init(void) { init_param1(); init_param2(physmem); mips_cpu_init(); cpuinfo.cache_coherent_dma = TRUE; pmap_bootstrap(); mips_proc0_init(); mutex_init(); #ifdef DDB kdb_init(); if (boothowto & RB_KDB) { kdb_enter("Boot flags requested debugger", NULL); } #endif } unsigned int platform_get_timecount(struct timecounter *tc __unused) { uint64_t count = nlm_pic_read_timer(xlp_pic_base, PIC_CLOCK_TIMER); return (unsigned int)~count; } static void xlp_pic_init(void) { struct timecounter pic_timecounter = { platform_get_timecount, /* get_timecount */ 0, /* no poll_pps */ ~0U, /* counter_mask */ XLP_IO_CLK, /* frequency */ "XLRPIC", /* name */ 2000, /* quality (adjusted in code) */ }; int i; int maxirt; xlp_pic_base = nlm_get_pic_regbase(0); /* TOOD: Add other nodes */ maxirt = nlm_read_reg(nlm_get_pic_pcibase(nlm_nodeid()), XLP_PCI_DEVINFO_REG0); printf("Initializing PIC...@%jx %d IRTs\n", (uintmax_t)xlp_pic_base, maxirt); /* Bind all PIC irqs to cpu 0 */ for (i = 0; i < maxirt; i++) nlm_pic_write_irt(xlp_pic_base, i, 0, 0, 1, 0, 1, 0, 0x1); nlm_pic_set_timer(xlp_pic_base, PIC_CLOCK_TIMER, ~0ULL, 0, 0); platform_timecounter = &pic_timecounter; } #if defined(__mips_n32) || defined(__mips_n64) /* PHYSADDR_64_BIT */ #ifdef XLP_SIM #define XLP_MEM_LIM 0x200000000ULL #else #define XLP_MEM_LIM 0x10000000000ULL #endif #else #define XLP_MEM_LIM 0xfffff000UL #endif static vm_paddr_t xlp_mem_excl[] = { 0, 0, /* entry for kernel image, set by xlp_mem_init*/ 0x0c000000, 0x0d000000, /* uboot mess */ 0x10000000, 0x14000000, /* cms queue and other stuff */ 0x1fc00000, 0x1fd00000, /* reset vec */ 0x1e000000, 0x1e200000, /* poe buffers */ }; static int mem_exclude_add(vm_paddr_t *avail, vm_paddr_t mstart, vm_paddr_t mend) { int nreg = sizeof(xlp_mem_excl)/sizeof(xlp_mem_excl[0]); int i, pos; pos = 0; for (i = 0; i < nreg; i += 2) { if (mstart > xlp_mem_excl[i + 1]) continue; if (mstart < xlp_mem_excl[i]) { avail[pos++] = mstart; if (mend < xlp_mem_excl[i]) avail[pos++] = mend; else avail[pos++] = xlp_mem_excl[i]; } mstart = xlp_mem_excl[i + 1]; if (mend <= mstart) break; } if (mstart < mend) { avail[pos++] = mstart; avail[pos++] = mend; } return (pos); } static void xlp_mem_init(void) { vm_paddr_t physsz, tmp; uint64_t bridgebase, base, lim, val; int i, j, k, n; /* update kernel image area in exclude regions */ tmp = (vm_paddr_t)MIPS_KSEG0_TO_PHYS(&_end); tmp = round_page(tmp) + 0x20000; /* round up */ xlp_mem_excl[1] = tmp; printf("Memory (from DRAM BARs):\n"); bridgebase = nlm_get_bridge_regbase(0); /* TODO: Add other nodes */ physsz = 0; for (i = 0, j = 0; i < 8; i++) { val = nlm_read_bridge_reg(bridgebase, BRIDGE_DRAM_BAR(i)); val = (val >> 12) & 0xfffff; base = val << 20; val = nlm_read_bridge_reg(bridgebase, BRIDGE_DRAM_LIMIT(i)); val = (val >> 12) & 0xfffff; if (val == 0) /* BAR not enabled */ continue; lim = (val + 1) << 20; printf(" BAR %d: %#jx - %#jx : ", i, (intmax_t)base, (intmax_t)lim); if (lim <= base) { printf("\tskipped - malformed %#jx -> %#jx\n", (intmax_t)base, (intmax_t)lim); continue; } else if (base >= XLP_MEM_LIM) { printf(" skipped - outside usable limit %#jx.\n", (intmax_t)XLP_MEM_LIM); continue; } else if (lim >= XLP_MEM_LIM) { lim = XLP_MEM_LIM; printf(" truncated to %#jx.\n", (intmax_t)XLP_MEM_LIM); } else printf(" usable\n"); /* exclude unusable regions from BAR and add rest */ n = mem_exclude_add(&phys_avail[j], base, lim); for (k = j; k < j + n; k += 2) { physsz += phys_avail[k + 1] - phys_avail[k]; printf("\tMem[%d]: %#jx - %#jx\n", k/2, (intmax_t)phys_avail[k], (intmax_t)phys_avail[k+1]); } j = k; } /* setup final entry with 0 */ phys_avail[j] = phys_avail[j + 1] = 0; /* copy phys_avail to dump_avail */ for (i = 0; i <= j + 1; i++) dump_avail[i] = phys_avail[i]; realmem = physmem = btoc(physsz); } void platform_start(__register_t a0 __unused, __register_t a1 __unused, __register_t a2 __unused, __register_t a3 __unused) { /* Initialize pcpu stuff */ mips_pcpu0_init(); /* initialize console so that we have printf */ boothowto |= (RB_SERIAL | RB_MULTIPLE); /* Use multiple consoles */ init_static_kenv(boot1_env, sizeof(boot1_env)); xlp_bootargs_init(a0); /* clockrate used by delay, so initialize it here */ xlp_cpu_frequency = xlp_get_cpu_frequency(0, 0); cpu_clock = xlp_cpu_frequency / 1000000; mips_timer_early_init(xlp_cpu_frequency); /* Init console please */ cninit(); /* Early core init and fixes for errata */ xlp_setup_core(); xlp_parse_mmu_options(); xlp_mem_init(); bcopy(XLPResetEntry, (void *)MIPS_RESET_EXC_VEC, XLPResetEntryEnd - XLPResetEntry); #ifdef SMP /* * We will enable the other threads in core 0 here * so that the TLB and cache info is correct when * mips_init runs */ xlp_enable_threads(xlp_mmuval); #endif /* setup for the startup core */ xlp_setup_mmu(); /* Read/Guess/setup board information */ nlm_board_info_setup(); /* MIPS generic init */ mips_init(); /* * XLP specific post initialization * initialize other on chip stuff */ xlp_pic_init(); mips_timer_init_params(xlp_cpu_frequency, 0); } void platform_cpu_init() { } void platform_reset(void) { uint64_t sysbase = nlm_get_sys_regbase(0); nlm_write_sys_reg(sysbase, SYS_CHIP_RESET, 1); for( ; ; ) __asm __volatile("wait"); } #ifdef SMP /* * XLP threads are started simultaneously when we enable threads, this will * ensure that the threads are blocked in platform_init_ap, until they are * ready to proceed to smp_init_secondary() */ static volatile int thr_unblock[4]; int platform_start_ap(int cpuid) { uint32_t coremask, val; uint64_t sysbase = nlm_get_sys_regbase(0); int hwtid = xlp_cpuid_to_hwtid[cpuid]; int core, thr; core = hwtid / 4; thr = hwtid % 4; if (thr == 0) { /* First thread in core, do core wake up */ coremask = 1u << core; /* Enable core clock */ val = nlm_read_sys_reg(sysbase, SYS_CORE_DFS_DIS_CTRL); val &= ~coremask; nlm_write_sys_reg(sysbase, SYS_CORE_DFS_DIS_CTRL, val); /* Remove CPU Reset */ val = nlm_read_sys_reg(sysbase, SYS_CPU_RESET); val &= ~coremask & 0xff; nlm_write_sys_reg(sysbase, SYS_CPU_RESET, val); if (bootverbose) printf("Waking up core %d ...", core); /* Poll for CPU to mark itself coherent */ do { val = nlm_read_sys_reg(sysbase, SYS_CPU_NONCOHERENT_MODE); } while ((val & coremask) != 0); if (bootverbose) printf("Done\n"); } else { /* otherwise release the threads stuck in platform_init_ap */ thr_unblock[thr] = 1; } return (0); } void platform_init_ap(int cpuid) { uint32_t stat; int thr; /* The first thread has to setup the MMU and enable other threads */ thr = nlm_threadid(); if (thr == 0) { xlp_setup_core(); xlp_enable_threads(xlp_mmuval); } else { /* * FIXME busy wait here eats too many cycles, especially * in the core 0 while bootup */ while (thr_unblock[thr] == 0) __asm__ __volatile__ ("nop;nop;nop;nop"); thr_unblock[thr] = 0; } xlp_setup_mmu(); stat = mips_rd_status(); KASSERT((stat & MIPS_SR_INT_IE) == 0, ("Interrupts enabled in %s!", __func__)); stat |= MIPS_SR_COP_2_BIT | MIPS_SR_COP_0_BIT; mips_wr_status(stat); nlm_write_c0_eimr(0ull); xlp_enable_irq(IRQ_IPI); xlp_enable_irq(IRQ_TIMER); xlp_enable_irq(IRQ_MSGRING); return; } int platform_ipi_intrnum(void) { return (IRQ_IPI); } void platform_ipi_send(int cpuid) { nlm_pic_send_ipi(xlp_pic_base, xlp_cpuid_to_hwtid[cpuid], platform_ipi_intrnum(), 0); } void platform_ipi_clear(void) { } int platform_processor_id(void) { return (xlp_hwtid_to_cpuid[nlm_cpuid()]); } void platform_cpu_mask(cpuset_t *mask) { int i, s; CPU_ZERO(mask); s = xlp_ncores * xlp_threads_per_core; for (i = 0; i < s; i++) CPU_SET(i, mask); } struct cpu_group * platform_smp_topo() { return (smp_topo_2level(CG_SHARE_L2, xlp_ncores, CG_SHARE_L1, xlp_threads_per_core, CG_FLAG_THREAD)); } #endif