/*- * Copyright (c) 2014 Ruslan Bukin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Vybrid Family 12-bit Analog to Digital Converter (ADC) * Chapter 37, Vybrid Reference Manual, Rev. 5, 07/2013 */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ADC_HC0 0x00 /* Ctrl reg for hardware triggers */ #define ADC_HC1 0x04 /* Ctrl reg for hardware triggers */ #define HC_AIEN (1 << 7) /* Conversion Complete Int Control */ #define HC_ADCH_M 0x1f /* Input Channel Select Mask */ #define HC_ADCH_S 0 /* Input Channel Select Shift */ #define ADC_HS 0x08 /* Status register for HW triggers */ #define HS_COCO0 (1 << 0) /* Conversion Complete Flag */ #define HS_COCO1 (1 << 1) /* Conversion Complete Flag */ #define ADC_R0 0x0C /* Data result reg for HW triggers */ #define ADC_R1 0x10 /* Data result reg for HW triggers */ #define ADC_CFG 0x14 /* Configuration register */ #define CFG_OVWREN (1 << 16) /* Data Overwrite Enable */ #define CFG_AVGS_M 0x3 /* Hardware Average select Mask */ #define CFG_AVGS_S 14 /* Hardware Average select Shift */ #define CFG_ADTRG (1 << 13) /* Conversion Trigger Select */ #define CFG_REFSEL_M 0x3 /* Voltage Reference Select Mask */ #define CFG_REFSEL_S 11 /* Voltage Reference Select Shift */ #define CFG_ADHSC (1 << 10) /* High Speed Configuration */ #define CFG_ADSTS_M 0x3 /* Defines the sample time duration */ #define CFG_ADSTS_S 8 /* Defines the sample time duration */ #define CFG_ADLPC (1 << 7) /* Low-Power Configuration */ #define CFG_ADIV_M 0x3 /* Clock Divide Select */ #define CFG_ADIV_S 5 /* Clock Divide Select */ #define CFG_ADLSMP (1 << 4) /* Long Sample Time Configuration */ #define CFG_MODE_M 0x3 /* Conversion Mode Selection Mask */ #define CFG_MODE_S 2 /* Conversion Mode Selection Shift */ #define CFG_MODE_12 0x2 /* 12-bit mode */ #define CFG_ADICLK_M 0x3 /* Input Clock Select Mask */ #define CFG_ADICLK_S 0 /* Input Clock Select Shift */ #define ADC_GC 0x18 /* General control register */ #define GC_CAL (1 << 7) /* Calibration */ #define GC_ADCO (1 << 6) /* Continuous Conversion Enable */ #define GC_AVGE (1 << 5) /* Hardware average enable */ #define GC_ACFE (1 << 4) /* Compare Function Enable */ #define GC_ACFGT (1 << 3) /* Compare Function Greater Than En */ #define GC_ACREN (1 << 2) /* Compare Function Range En */ #define GC_DMAEN (1 << 1) /* DMA Enable */ #define GC_ADACKEN (1 << 0) /* Asynchronous clock output enable */ #define ADC_GS 0x1C /* General status register */ #define GS_AWKST (1 << 2) /* Asynchronous wakeup int status */ #define GS_CALF (1 << 1) /* Calibration Failed Flag */ #define GS_ADACT (1 << 0) /* Conversion Active */ #define ADC_CV 0x20 /* Compare value register */ #define CV_CV2_M 0xfff /* Compare Value 2 Mask */ #define CV_CV2_S 16 /* Compare Value 2 Shift */ #define CV_CV1_M 0xfff /* Compare Value 1 Mask */ #define CV_CV1_S 0 /* Compare Value 1 Shift */ #define ADC_OFS 0x24 /* Offset correction value register */ #define OFS_SIGN 12 /* Sign bit */ #define OFS_M 0xfff /* Offset value Mask */ #define OFS_S 0 /* Offset value Shift */ #define ADC_CAL 0x28 /* Calibration value register */ #define CAL_CODE_M 0xf /* Calibration Result Value Mask */ #define CAL_CODE_S 0 /* Calibration Result Value Shift */ #define ADC_PCTL 0x30 /* Pin control register */ struct adc_softc { struct resource *res[2]; bus_space_tag_t bst; bus_space_handle_t bsh; void *ih; }; struct adc_softc *adc_sc; static struct resource_spec adc_spec[] = { { SYS_RES_MEMORY, 0, RF_ACTIVE }, { SYS_RES_IRQ, 0, RF_ACTIVE }, { -1, 0 } }; static int adc_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (!ofw_bus_is_compatible(dev, "fsl,mvf600-adc")) return (ENXIO); device_set_desc(dev, "Vybrid Family " "12-bit Analog to Digital Converter"); return (BUS_PROBE_DEFAULT); } static void adc_intr(void *arg) { struct adc_softc *sc; sc = arg; /* Conversation complete */ } uint32_t adc_read(void) { struct adc_softc *sc; sc = adc_sc; if (sc == NULL) return (0); return (READ4(sc, ADC_R0)); } uint32_t adc_enable(int channel) { struct adc_softc *sc; int reg; sc = adc_sc; if (sc == NULL) return (1); reg = READ4(sc, ADC_HC0); reg &= ~(HC_ADCH_M << HC_ADCH_S); reg |= (channel << HC_ADCH_S); WRITE4(sc, ADC_HC0, reg); return (0); } static int adc_attach(device_t dev) { struct adc_softc *sc; int err; int reg; sc = device_get_softc(dev); if (bus_alloc_resources(dev, adc_spec, sc->res)) { device_printf(dev, "could not allocate resources\n"); return (ENXIO); } /* Memory interface */ sc->bst = rman_get_bustag(sc->res[0]); sc->bsh = rman_get_bushandle(sc->res[0]); adc_sc = sc; /* Setup interrupt handler */ err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_BIO | INTR_MPSAFE, NULL, adc_intr, sc, &sc->ih); if (err) { device_printf(dev, "Unable to alloc interrupt resource.\n"); return (ENXIO); } /* Configure 12-bit mode */ reg = READ4(sc, ADC_CFG); reg &= ~(CFG_MODE_M << CFG_MODE_S); reg |= (CFG_MODE_12 << CFG_MODE_S); /* 12bit */ WRITE4(sc, ADC_CFG, reg); /* Configure for continuous conversion */ reg = READ4(sc, ADC_GC); reg |= (GC_ADCO | GC_AVGE); WRITE4(sc, ADC_GC, reg); /* Disable interrupts */ reg = READ4(sc, ADC_HC0); reg &= HC_AIEN; WRITE4(sc, ADC_HC0, reg); return (0); } static device_method_t adc_methods[] = { DEVMETHOD(device_probe, adc_probe), DEVMETHOD(device_attach, adc_attach), { 0, 0 } }; static driver_t adc_driver = { "adc", adc_methods, sizeof(struct adc_softc), }; static devclass_t adc_devclass; DRIVER_MODULE(adc, simplebus, adc_driver, adc_devclass, 0, 0);