/*-
* Copyright (c) 2014 Ruslan Bukin
* All rights reserved.
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-10-C-0237)
* ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Synopsys DesignWare Mobile Storage Host Controller
* Chapter 14, Altera Cyclone V Device Handbook (CV-5V2 2014.07.22)
*/
#include
__FBSDID("$FreeBSD$");
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "mmcbr_if.h"
#define dprintf(x, arg...)
#define READ4(_sc, _reg) \
bus_read_4((_sc)->res[0], _reg)
#define WRITE4(_sc, _reg, _val) \
bus_write_4((_sc)->res[0], _reg, _val)
#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
#define DWMMC_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx)
#define DWMMC_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx)
#define DWMMC_LOCK_INIT(_sc) \
mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->dev), \
"dwmmc", MTX_DEF)
#define DWMMC_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx);
#define DWMMC_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED);
#define DWMMC_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED);
#define PENDING_CMD 0x01
#define PENDING_STOP 0x02
#define CARD_INIT_DONE 0x04
#define DWMMC_DATA_ERR_FLAGS (SDMMC_INTMASK_DRT | SDMMC_INTMASK_DCRC \
|SDMMC_INTMASK_HTO | SDMMC_INTMASK_SBE \
|SDMMC_INTMASK_EBE)
#define DWMMC_CMD_ERR_FLAGS (SDMMC_INTMASK_RTO | SDMMC_INTMASK_RCRC \
|SDMMC_INTMASK_RE)
#define DWMMC_ERR_FLAGS (DWMMC_DATA_ERR_FLAGS | DWMMC_CMD_ERR_FLAGS \
|SDMMC_INTMASK_HLE)
#define DES0_DIC (1 << 1)
#define DES0_LD (1 << 2)
#define DES0_FS (1 << 3)
#define DES0_CH (1 << 4)
#define DES0_ER (1 << 5)
#define DES0_CES (1 << 30)
#define DES0_OWN (1 << 31)
#define DES1_BS1_MASK 0xfff
#define DES1_BS1_SHIFT 0
struct idmac_desc {
uint32_t des0; /* control */
uint32_t des1; /* bufsize */
uint32_t des2; /* buf1 phys addr */
uint32_t des3; /* buf2 phys addr or next descr */
};
#define DESC_COUNT 256
#define DESC_SIZE (sizeof(struct idmac_desc) * DESC_COUNT)
#define DEF_MSIZE 0x2 /* Burst size of multiple transaction */
struct dwmmc_softc {
struct resource *res[2];
bus_space_tag_t bst;
bus_space_handle_t bsh;
device_t dev;
void *intr_cookie;
struct mmc_host host;
struct mtx sc_mtx;
struct mmc_request *req;
struct mmc_command *curcmd;
uint32_t flags;
uint32_t hwtype;
uint32_t use_auto_stop;
bus_dma_tag_t desc_tag;
bus_dmamap_t desc_map;
struct idmac_desc *desc_ring;
bus_addr_t desc_ring_paddr;
bus_dma_tag_t buf_tag;
bus_dmamap_t buf_map;
uint32_t bus_busy;
uint32_t dto_rcvd;
uint32_t acd_rcvd;
uint32_t cmd_done;
uint32_t bus_hz;
uint32_t fifo_depth;
uint32_t num_slots;
uint32_t sdr_timing;
uint32_t ddr_timing;
};
static void dwmmc_next_operation(struct dwmmc_softc *);
static int dwmmc_setup_bus(struct dwmmc_softc *, int);
static int dma_done(struct dwmmc_softc *, struct mmc_command *);
static int dma_stop(struct dwmmc_softc *);
static struct resource_spec dwmmc_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
enum {
HWTYPE_NONE,
HWTYPE_ALTERA,
HWTYPE_EXYNOS,
};
#define HWTYPE_MASK (0x0000ffff)
#define HWFLAG_MASK (0xffff << 16)
static struct ofw_compat_data compat_data[] = {
{"altr,socfpga-dw-mshc", HWTYPE_ALTERA},
{"samsung,exynos5420-dw-mshc", HWTYPE_EXYNOS},
{NULL, HWTYPE_NONE},
};
static void
dwmmc_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (error != 0)
return;
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static void
dwmmc_ring_setup(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct dwmmc_softc *sc;
int idx;
if (error != 0)
return;
sc = arg;
dprintf("nsegs %d seg0len %lu\n", nsegs, segs[0].ds_len);
for (idx = 0; idx < nsegs; idx++) {
sc->desc_ring[idx].des0 = (DES0_OWN | DES0_DIC | DES0_CH);
sc->desc_ring[idx].des1 = segs[idx].ds_len;
sc->desc_ring[idx].des2 = segs[idx].ds_addr;
if (idx == 0)
sc->desc_ring[idx].des0 |= DES0_FS;
if (idx == (nsegs - 1)) {
sc->desc_ring[idx].des0 &= ~(DES0_DIC | DES0_CH);
sc->desc_ring[idx].des0 |= DES0_LD;
}
}
}
static int
dwmmc_ctrl_reset(struct dwmmc_softc *sc, int reset_bits)
{
int reg;
int i;
reg = READ4(sc, SDMMC_CTRL);
reg |= (reset_bits);
WRITE4(sc, SDMMC_CTRL, reg);
/* Wait reset done */
for (i = 0; i < 100; i++) {
if (!(READ4(sc, SDMMC_CTRL) & reset_bits))
return (0);
DELAY(10);
};
device_printf(sc->dev, "Reset failed\n");
return (1);
}
static int
dma_setup(struct dwmmc_softc *sc)
{
int error;
int nidx;
int idx;
/*
* Set up TX descriptor ring, descriptors, and dma maps.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* Parent tag. */
4096, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
DESC_SIZE, 1, /* maxsize, nsegments */
DESC_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->desc_tag);
if (error != 0) {
device_printf(sc->dev,
"could not create ring DMA tag.\n");
return (1);
}
error = bus_dmamem_alloc(sc->desc_tag, (void**)&sc->desc_ring,
BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO,
&sc->desc_map);
if (error != 0) {
device_printf(sc->dev,
"could not allocate descriptor ring.\n");
return (1);
}
error = bus_dmamap_load(sc->desc_tag, sc->desc_map,
sc->desc_ring, DESC_SIZE, dwmmc_get1paddr,
&sc->desc_ring_paddr, 0);
if (error != 0) {
device_printf(sc->dev,
"could not load descriptor ring map.\n");
return (1);
}
for (idx = 0; idx < DESC_COUNT; idx++) {
sc->desc_ring[idx].des0 = DES0_CH;
sc->desc_ring[idx].des1 = 0;
nidx = (idx + 1) % DESC_COUNT;
sc->desc_ring[idx].des3 = sc->desc_ring_paddr + \
(nidx * sizeof(struct idmac_desc));
}
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* Parent tag. */
4096, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
DESC_COUNT*MMC_SECTOR_SIZE, /* maxsize */
DESC_COUNT, /* nsegments */
MMC_SECTOR_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->buf_tag);
if (error != 0) {
device_printf(sc->dev,
"could not create ring DMA tag.\n");
return (1);
}
error = bus_dmamap_create(sc->buf_tag, 0,
&sc->buf_map);
if (error != 0) {
device_printf(sc->dev,
"could not create TX buffer DMA map.\n");
return (1);
}
return (0);
}
static void
dwmmc_cmd_done(struct dwmmc_softc *sc)
{
struct mmc_command *cmd;
cmd = sc->curcmd;
if (cmd == NULL)
return;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
cmd->resp[3] = READ4(sc, SDMMC_RESP0);
cmd->resp[2] = READ4(sc, SDMMC_RESP1);
cmd->resp[1] = READ4(sc, SDMMC_RESP2);
cmd->resp[0] = READ4(sc, SDMMC_RESP3);
} else {
cmd->resp[3] = 0;
cmd->resp[2] = 0;
cmd->resp[1] = 0;
cmd->resp[0] = READ4(sc, SDMMC_RESP0);
}
}
}
static void
dwmmc_tasklet(struct dwmmc_softc *sc)
{
struct mmc_command *cmd;
cmd = sc->curcmd;
if (cmd == NULL)
return;
if (!sc->cmd_done)
return;
if (cmd->error != MMC_ERR_NONE || !cmd->data) {
dwmmc_next_operation(sc);
} else if (cmd->data && sc->dto_rcvd) {
if ((cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK ||
cmd->opcode == MMC_READ_MULTIPLE_BLOCK) &&
sc->use_auto_stop) {
if (sc->acd_rcvd)
dwmmc_next_operation(sc);
} else {
dwmmc_next_operation(sc);
}
}
}
static void
dwmmc_intr(void *arg)
{
struct mmc_command *cmd;
struct dwmmc_softc *sc;
uint32_t reg;
sc = arg;
DWMMC_LOCK(sc);
cmd = sc->curcmd;
/* First handle SDMMC controller interrupts */
reg = READ4(sc, SDMMC_MINTSTS);
if (reg) {
dprintf("%s 0x%08x\n", __func__, reg);
if (reg & DWMMC_CMD_ERR_FLAGS) {
WRITE4(sc, SDMMC_RINTSTS, DWMMC_CMD_ERR_FLAGS);
dprintf("cmd err 0x%08x cmd 0x%08x\n",
reg, cmd->opcode);
cmd->error = MMC_ERR_TIMEOUT;
}
if (reg & DWMMC_DATA_ERR_FLAGS) {
WRITE4(sc, SDMMC_RINTSTS, DWMMC_DATA_ERR_FLAGS);
dprintf("data err 0x%08x cmd 0x%08x\n",
reg, cmd->opcode);
cmd->error = MMC_ERR_FAILED;
dma_done(sc, cmd);
dma_stop(sc);
}
if (reg & SDMMC_INTMASK_CMD_DONE) {
dwmmc_cmd_done(sc);
sc->cmd_done = 1;
WRITE4(sc, SDMMC_RINTSTS, SDMMC_INTMASK_CMD_DONE);
}
if (reg & SDMMC_INTMASK_ACD) {
sc->acd_rcvd = 1;
WRITE4(sc, SDMMC_RINTSTS, SDMMC_INTMASK_ACD);
}
if (reg & SDMMC_INTMASK_DTO) {
sc->dto_rcvd = 1;
WRITE4(sc, SDMMC_RINTSTS, SDMMC_INTMASK_DTO);
}
if (reg & SDMMC_INTMASK_CD) {
/* XXX: Handle card detect */
WRITE4(sc, SDMMC_RINTSTS, SDMMC_INTMASK_CD);
}
}
/* Now handle DMA interrupts */
reg = READ4(sc, SDMMC_IDSTS);
if (reg) {
dprintf("dma intr 0x%08x\n", reg);
if (reg & (SDMMC_IDINTEN_TI | SDMMC_IDINTEN_RI)) {
WRITE4(sc, SDMMC_IDSTS, (SDMMC_IDINTEN_TI |
SDMMC_IDINTEN_RI));
WRITE4(sc, SDMMC_IDSTS, SDMMC_IDINTEN_NI);
dma_done(sc, cmd);
}
}
dwmmc_tasklet(sc);
DWMMC_UNLOCK(sc);
}
static int
parse_fdt(struct dwmmc_softc *sc)
{
pcell_t dts_value[3];
phandle_t node;
int len;
if ((node = ofw_bus_get_node(sc->dev)) == -1)
return (ENXIO);
/* fifo-depth */
if ((len = OF_getproplen(node, "fifo-depth")) <= 0)
return (ENXIO);
OF_getencprop(node, "fifo-depth", dts_value, len);
sc->fifo_depth = dts_value[0];
/* num-slots */
if ((len = OF_getproplen(node, "num-slots")) <= 0)
return (ENXIO);
OF_getencprop(node, "num-slots", dts_value, len);
sc->num_slots = dts_value[0];
/*
* We need some platform-specific code to know
* what the clock is supplied for our device.
* For now rely on the value specified in FDT.
*/
if ((len = OF_getproplen(node, "bus-frequency")) <= 0)
return (ENXIO);
OF_getencprop(node, "bus-frequency", dts_value, len);
sc->bus_hz = dts_value[0];
/*
* Platform-specific stuff
* XXX: Move to separate file
*/
if ((sc->hwtype & HWTYPE_MASK) != HWTYPE_EXYNOS)
return (0);
if ((len = OF_getproplen(node, "samsung,dw-mshc-ciu-div")) <= 0)
return (ENXIO);
OF_getencprop(node, "samsung,dw-mshc-ciu-div", dts_value, len);
sc->sdr_timing = (dts_value[0] << SDMMC_CLKSEL_DIVIDER_SHIFT);
sc->ddr_timing = (dts_value[0] << SDMMC_CLKSEL_DIVIDER_SHIFT);
if ((len = OF_getproplen(node, "samsung,dw-mshc-sdr-timing")) <= 0)
return (ENXIO);
OF_getencprop(node, "samsung,dw-mshc-sdr-timing", dts_value, len);
sc->sdr_timing |= ((dts_value[0] << SDMMC_CLKSEL_SAMPLE_SHIFT) |
(dts_value[1] << SDMMC_CLKSEL_DRIVE_SHIFT));
if ((len = OF_getproplen(node, "samsung,dw-mshc-ddr-timing")) <= 0)
return (ENXIO);
OF_getencprop(node, "samsung,dw-mshc-ddr-timing", dts_value, len);
sc->ddr_timing |= ((dts_value[0] << SDMMC_CLKSEL_SAMPLE_SHIFT) |
(dts_value[1] << SDMMC_CLKSEL_DRIVE_SHIFT));
return (0);
}
static int
dwmmc_probe(device_t dev)
{
uintptr_t hwtype;
if (!ofw_bus_status_okay(dev))
return (ENXIO);
hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
if (hwtype == HWTYPE_NONE)
return (ENXIO);
device_set_desc(dev, "Synopsys DesignWare Mobile "
"Storage Host Controller");
return (BUS_PROBE_DEFAULT);
}
static int
dwmmc_attach(device_t dev)
{
struct dwmmc_softc *sc;
device_t child;
int error;
int slot;
sc = device_get_softc(dev);
sc->dev = dev;
sc->hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
/* Why not to use Auto Stop? It save a hundred of irq per second */
sc->use_auto_stop = 1;
error = parse_fdt(sc);
if (error != 0) {
device_printf(dev, "Can't get FDT property.\n");
return (ENXIO);
}
DWMMC_LOCK_INIT(sc);
if (bus_alloc_resources(dev, dwmmc_spec, sc->res)) {
device_printf(dev, "could not allocate resources\n");
return (ENXIO);
}
/* Memory interface */
sc->bst = rman_get_bustag(sc->res[0]);
sc->bsh = rman_get_bushandle(sc->res[0]);
/* Setup interrupt handler. */
error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_NET | INTR_MPSAFE,
NULL, dwmmc_intr, sc, &sc->intr_cookie);
if (error != 0) {
device_printf(dev, "could not setup interrupt handler.\n");
return (ENXIO);
}
device_printf(dev, "Hardware version ID is %04x\n",
READ4(sc, SDMMC_VERID) & 0xffff);
WRITE4(sc, EMMCP_MPSBEGIN0, 0);
WRITE4(sc, EMMCP_SEND0, 0);
WRITE4(sc, EMMCP_CTRL0, (MPSCTRL_SECURE_READ_BIT |
MPSCTRL_SECURE_WRITE_BIT |
MPSCTRL_NON_SECURE_READ_BIT |
MPSCTRL_NON_SECURE_WRITE_BIT |
MPSCTRL_VALID));
/* XXX: we support operation for slot index 0 only */
slot = 0;
WRITE4(sc, SDMMC_PWREN, (1 << slot));
/* Reset all */
if (dwmmc_ctrl_reset(sc, (SDMMC_CTRL_RESET |
SDMMC_CTRL_FIFO_RESET |
SDMMC_CTRL_DMA_RESET)))
return (ENXIO);
dwmmc_setup_bus(sc, sc->host.f_min);
if (dma_setup(sc))
return (ENXIO);
/* Install desc base */
WRITE4(sc, SDMMC_DBADDR, sc->desc_ring_paddr);
/* Enable DMA interrupts */
WRITE4(sc, SDMMC_IDSTS, SDMMC_IDINTEN_MASK);
WRITE4(sc, SDMMC_IDINTEN, (SDMMC_IDINTEN_NI |
SDMMC_IDINTEN_RI |
SDMMC_IDINTEN_TI));
/* Clear and disable interrups for a while */
WRITE4(sc, SDMMC_RINTSTS, 0xffffffff);
WRITE4(sc, SDMMC_INTMASK, 0);
/* Maximum timeout */
WRITE4(sc, SDMMC_TMOUT, 0xffffffff);
/* Enable interrupts */
WRITE4(sc, SDMMC_RINTSTS, 0xffffffff);
WRITE4(sc, SDMMC_INTMASK, (SDMMC_INTMASK_CMD_DONE |
SDMMC_INTMASK_DTO |
SDMMC_INTMASK_ACD |
SDMMC_INTMASK_TXDR |
SDMMC_INTMASK_RXDR |
DWMMC_ERR_FLAGS |
SDMMC_INTMASK_CD));
WRITE4(sc, SDMMC_CTRL, SDMMC_CTRL_INT_ENABLE);
sc->host.f_min = 400000;
sc->host.f_max = 200000000;
sc->host.host_ocr = MMC_OCR_320_330 | MMC_OCR_330_340;
sc->host.caps = MMC_CAP_4_BIT_DATA;
child = device_add_child(dev, "mmc", 0);
return (bus_generic_attach(dev));
}
static int
dwmmc_setup_bus(struct dwmmc_softc *sc, int freq)
{
int tout;
int div;
if (freq == 0) {
WRITE4(sc, SDMMC_CLKENA, 0);
WRITE4(sc, SDMMC_CMD, (SDMMC_CMD_WAIT_PRVDATA |
SDMMC_CMD_UPD_CLK_ONLY | SDMMC_CMD_START));
tout = 1000;
do {
if (tout-- < 0) {
device_printf(sc->dev, "Failed update clk\n");
return (1);
}
} while (READ4(sc, SDMMC_CMD) & SDMMC_CMD_START);
return (0);
}
WRITE4(sc, SDMMC_CLKENA, 0);
WRITE4(sc, SDMMC_CLKSRC, 0);
div = (sc->bus_hz != freq) ? DIV_ROUND_UP(sc->bus_hz, 2 * freq) : 0;
WRITE4(sc, SDMMC_CLKDIV, div);
WRITE4(sc, SDMMC_CMD, (SDMMC_CMD_WAIT_PRVDATA |
SDMMC_CMD_UPD_CLK_ONLY | SDMMC_CMD_START));
tout = 1000;
do {
if (tout-- < 0) {
device_printf(sc->dev, "Failed to update clk");
return (1);
}
} while (READ4(sc, SDMMC_CMD) & SDMMC_CMD_START);
WRITE4(sc, SDMMC_CLKENA, (SDMMC_CLKENA_CCLK_EN | SDMMC_CLKENA_LP));
WRITE4(sc, SDMMC_CMD, SDMMC_CMD_WAIT_PRVDATA |
SDMMC_CMD_UPD_CLK_ONLY | SDMMC_CMD_START);
tout = 1000;
do {
if (tout-- < 0) {
device_printf(sc->dev, "Failed to enable clk\n");
return (1);
}
} while (READ4(sc, SDMMC_CMD) & SDMMC_CMD_START);
return (0);
}
static int
dwmmc_update_ios(device_t brdev, device_t reqdev)
{
struct dwmmc_softc *sc;
struct mmc_ios *ios;
sc = device_get_softc(brdev);
ios = &sc->host.ios;
dprintf("Setting up clk %u bus_width %d\n",
ios->clock, ios->bus_width);
dwmmc_setup_bus(sc, ios->clock);
if (ios->bus_width == bus_width_8)
WRITE4(sc, SDMMC_CTYPE, SDMMC_CTYPE_8BIT);
else if (ios->bus_width == bus_width_4)
WRITE4(sc, SDMMC_CTYPE, SDMMC_CTYPE_4BIT);
else
WRITE4(sc, SDMMC_CTYPE, 0);
if ((sc->hwtype & HWTYPE_MASK) == HWTYPE_EXYNOS) {
/* XXX: take care about DDR or SDR use here */
WRITE4(sc, SDMMC_CLKSEL, sc->sdr_timing);
}
/*
* XXX: take care about DDR bit
*
* reg = READ4(sc, SDMMC_UHS_REG);
* reg |= (SDMMC_UHS_REG_DDR);
* WRITE4(sc, SDMMC_UHS_REG, reg);
*/
return (0);
}
static int
dma_done(struct dwmmc_softc *sc, struct mmc_command *cmd)
{
struct mmc_data *data;
data = cmd->data;
if (data->flags & MMC_DATA_WRITE)
bus_dmamap_sync(sc->buf_tag, sc->buf_map,
BUS_DMASYNC_POSTWRITE);
else
bus_dmamap_sync(sc->buf_tag, sc->buf_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->buf_tag, sc->buf_map);
return (0);
}
static int
dma_stop(struct dwmmc_softc *sc)
{
int reg;
reg = READ4(sc, SDMMC_CTRL);
reg &= ~(SDMMC_CTRL_USE_IDMAC);
reg |= (SDMMC_CTRL_DMA_RESET);
WRITE4(sc, SDMMC_CTRL, reg);
reg = READ4(sc, SDMMC_BMOD);
reg &= ~(SDMMC_BMOD_DE | SDMMC_BMOD_FB);
reg |= (SDMMC_BMOD_SWR);
WRITE4(sc, SDMMC_BMOD, reg);
return (0);
}
static int
dma_prepare(struct dwmmc_softc *sc, struct mmc_command *cmd)
{
struct mmc_data *data;
int len;
int err;
int reg;
data = cmd->data;
len = data->len;
reg = READ4(sc, SDMMC_INTMASK);
reg &= ~(SDMMC_INTMASK_TXDR | SDMMC_INTMASK_RXDR);
WRITE4(sc, SDMMC_INTMASK, reg);
err = bus_dmamap_load(sc->buf_tag, sc->buf_map,
data->data, data->len, dwmmc_ring_setup,
sc, BUS_DMA_NOWAIT);
if (err != 0)
panic("dmamap_load failed\n");
if (data->flags & MMC_DATA_WRITE)
bus_dmamap_sync(sc->buf_tag, sc->buf_map,
BUS_DMASYNC_PREWRITE);
else
bus_dmamap_sync(sc->buf_tag, sc->buf_map,
BUS_DMASYNC_PREREAD);
reg = (DEF_MSIZE << SDMMC_FIFOTH_MSIZE_S);
reg |= ((sc->fifo_depth / 2) - 1) << SDMMC_FIFOTH_RXWMARK_S;
reg |= (sc->fifo_depth / 2) << SDMMC_FIFOTH_TXWMARK_S;
WRITE4(sc, SDMMC_FIFOTH, reg);
wmb();
reg = READ4(sc, SDMMC_CTRL);
reg |= (SDMMC_CTRL_USE_IDMAC | SDMMC_CTRL_DMA_ENABLE);
WRITE4(sc, SDMMC_CTRL, reg);
wmb();
reg = READ4(sc, SDMMC_BMOD);
reg |= (SDMMC_BMOD_DE | SDMMC_BMOD_FB);
WRITE4(sc, SDMMC_BMOD, reg);
/* Start */
WRITE4(sc, SDMMC_PLDMND, 1);
return (0);
}
static void
dwmmc_start_cmd(struct dwmmc_softc *sc, struct mmc_command *cmd)
{
struct mmc_data *data;
uint32_t blksz;
uint32_t cmdr;
sc->curcmd = cmd;
data = cmd->data;
/* XXX Upper layers don't always set this */
cmd->mrq = sc->req;
/* Begin setting up command register. */
cmdr = cmd->opcode;
dprintf("cmd->opcode 0x%08x\n", cmd->opcode);
if (cmd->opcode == MMC_STOP_TRANSMISSION ||
cmd->opcode == MMC_GO_IDLE_STATE ||
cmd->opcode == MMC_GO_INACTIVE_STATE)
cmdr |= SDMMC_CMD_STOP_ABORT;
else if (cmd->opcode != MMC_SEND_STATUS && data)
cmdr |= SDMMC_CMD_WAIT_PRVDATA;
/* Set up response handling. */
if (MMC_RSP(cmd->flags) != MMC_RSP_NONE) {
cmdr |= SDMMC_CMD_RESP_EXP;
if (cmd->flags & MMC_RSP_136)
cmdr |= SDMMC_CMD_RESP_LONG;
}
if (cmd->flags & MMC_RSP_CRC)
cmdr |= SDMMC_CMD_RESP_CRC;
/*
* XXX: Not all platforms want this.
*/
cmdr |= SDMMC_CMD_USE_HOLD_REG;
if ((sc->flags & CARD_INIT_DONE) == 0) {
sc->flags |= (CARD_INIT_DONE);
cmdr |= SDMMC_CMD_SEND_INIT;
}
if (data) {
if ((cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK ||
cmd->opcode == MMC_READ_MULTIPLE_BLOCK) &&
sc->use_auto_stop)
cmdr |= SDMMC_CMD_SEND_ASTOP;
cmdr |= SDMMC_CMD_DATA_EXP;
if (data->flags & MMC_DATA_STREAM)
cmdr |= SDMMC_CMD_MODE_STREAM;
if (data->flags & MMC_DATA_WRITE)
cmdr |= SDMMC_CMD_DATA_WRITE;
WRITE4(sc, SDMMC_TMOUT, 0xffffffff);
WRITE4(sc, SDMMC_BYTCNT, data->len);
blksz = (data->len < MMC_SECTOR_SIZE) ? \
data->len : MMC_SECTOR_SIZE;
WRITE4(sc, SDMMC_BLKSIZ, blksz);
dma_prepare(sc, cmd);
wmb();
}
dprintf("cmdr 0x%08x\n", cmdr);
WRITE4(sc, SDMMC_CMDARG, cmd->arg);
wmb();
WRITE4(sc, SDMMC_CMD, cmdr | SDMMC_CMD_START);
};
static void
dwmmc_next_operation(struct dwmmc_softc *sc)
{
struct mmc_request *req;
req = sc->req;
if (req == NULL)
return;
sc->acd_rcvd = 0;
sc->dto_rcvd = 0;
sc->cmd_done = 0;
/*
* XXX: Wait until card is still busy.
* We do need this to prevent data timeouts,
* mostly caused by multi-block write command
* followed by single-read.
*/
while(READ4(sc, SDMMC_STATUS) & (SDMMC_STATUS_DATA_BUSY))
continue;
if (sc->flags & PENDING_CMD) {
sc->flags &= ~PENDING_CMD;
dwmmc_start_cmd(sc, req->cmd);
return;
} else if (sc->flags & PENDING_STOP && !sc->use_auto_stop) {
sc->flags &= ~PENDING_STOP;
dwmmc_start_cmd(sc, req->stop);
return;
}
sc->req = NULL;
sc->curcmd = NULL;
req->done(req);
}
static int
dwmmc_request(device_t brdev, device_t reqdev, struct mmc_request *req)
{
struct dwmmc_softc *sc;
sc = device_get_softc(brdev);
dprintf("%s\n", __func__);
DWMMC_LOCK(sc);
if (sc->req != NULL) {
DWMMC_UNLOCK(sc);
return (EBUSY);
}
sc->req = req;
sc->flags |= PENDING_CMD;
if (sc->req->stop)
sc->flags |= PENDING_STOP;
dwmmc_next_operation(sc);
DWMMC_UNLOCK(sc);
return (0);
}
static int
dwmmc_get_ro(device_t brdev, device_t reqdev)
{
dprintf("%s\n", __func__);
return (0);
}
static int
dwmmc_acquire_host(device_t brdev, device_t reqdev)
{
struct dwmmc_softc *sc;
sc = device_get_softc(brdev);
DWMMC_LOCK(sc);
while (sc->bus_busy)
msleep(sc, &sc->sc_mtx, PZERO, "dwmmcah", hz / 5);
sc->bus_busy++;
DWMMC_UNLOCK(sc);
return (0);
}
static int
dwmmc_release_host(device_t brdev, device_t reqdev)
{
struct dwmmc_softc *sc;
sc = device_get_softc(brdev);
DWMMC_LOCK(sc);
sc->bus_busy--;
wakeup(sc);
DWMMC_UNLOCK(sc);
return (0);
}
static int
dwmmc_read_ivar(device_t bus, device_t child, int which, uintptr_t *result)
{
struct dwmmc_softc *sc;
sc = device_get_softc(bus);
switch (which) {
default:
return (EINVAL);
case MMCBR_IVAR_BUS_MODE:
*(int *)result = sc->host.ios.bus_mode;
break;
case MMCBR_IVAR_BUS_WIDTH:
*(int *)result = sc->host.ios.bus_width;
break;
case MMCBR_IVAR_CHIP_SELECT:
*(int *)result = sc->host.ios.chip_select;
break;
case MMCBR_IVAR_CLOCK:
*(int *)result = sc->host.ios.clock;
break;
case MMCBR_IVAR_F_MIN:
*(int *)result = sc->host.f_min;
break;
case MMCBR_IVAR_F_MAX:
*(int *)result = sc->host.f_max;
break;
case MMCBR_IVAR_HOST_OCR:
*(int *)result = sc->host.host_ocr;
break;
case MMCBR_IVAR_MODE:
*(int *)result = sc->host.mode;
break;
case MMCBR_IVAR_OCR:
*(int *)result = sc->host.ocr;
break;
case MMCBR_IVAR_POWER_MODE:
*(int *)result = sc->host.ios.power_mode;
break;
case MMCBR_IVAR_VDD:
*(int *)result = sc->host.ios.vdd;
break;
case MMCBR_IVAR_CAPS:
sc->host.caps |= MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA;
*(int *)result = sc->host.caps;
break;
case MMCBR_IVAR_MAX_DATA:
*(int *)result = DESC_COUNT;
}
return (0);
}
static int
dwmmc_write_ivar(device_t bus, device_t child, int which, uintptr_t value)
{
struct dwmmc_softc *sc;
sc = device_get_softc(bus);
switch (which) {
default:
return (EINVAL);
case MMCBR_IVAR_BUS_MODE:
sc->host.ios.bus_mode = value;
break;
case MMCBR_IVAR_BUS_WIDTH:
sc->host.ios.bus_width = value;
break;
case MMCBR_IVAR_CHIP_SELECT:
sc->host.ios.chip_select = value;
break;
case MMCBR_IVAR_CLOCK:
sc->host.ios.clock = value;
break;
case MMCBR_IVAR_MODE:
sc->host.mode = value;
break;
case MMCBR_IVAR_OCR:
sc->host.ocr = value;
break;
case MMCBR_IVAR_POWER_MODE:
sc->host.ios.power_mode = value;
break;
case MMCBR_IVAR_VDD:
sc->host.ios.vdd = value;
break;
/* These are read-only */
case MMCBR_IVAR_CAPS:
case MMCBR_IVAR_HOST_OCR:
case MMCBR_IVAR_F_MIN:
case MMCBR_IVAR_F_MAX:
case MMCBR_IVAR_MAX_DATA:
return (EINVAL);
}
return (0);
}
static device_method_t dwmmc_methods[] = {
DEVMETHOD(device_probe, dwmmc_probe),
DEVMETHOD(device_attach, dwmmc_attach),
/* Bus interface */
DEVMETHOD(bus_read_ivar, dwmmc_read_ivar),
DEVMETHOD(bus_write_ivar, dwmmc_write_ivar),
/* mmcbr_if */
DEVMETHOD(mmcbr_update_ios, dwmmc_update_ios),
DEVMETHOD(mmcbr_request, dwmmc_request),
DEVMETHOD(mmcbr_get_ro, dwmmc_get_ro),
DEVMETHOD(mmcbr_acquire_host, dwmmc_acquire_host),
DEVMETHOD(mmcbr_release_host, dwmmc_release_host),
DEVMETHOD_END
};
static driver_t dwmmc_driver = {
"dwmmc",
dwmmc_methods,
sizeof(struct dwmmc_softc),
};
static devclass_t dwmmc_devclass;
DRIVER_MODULE(dwmmc, simplebus, dwmmc_driver, dwmmc_devclass, 0, 0);