/*- * Copyright (c) 2000-2014 Mark R V Murray * Copyright (c) 2013 Arthur Mesh * Copyright (c) 2004 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include "opt_random.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* List for the dynamic sysctls */ static struct sysctl_ctx_list random_clist; /* * How many events to queue up. We create this many items in * an 'empty' queue, then transfer them to the 'harvest' queue with * supplied junk. When used, they are transferred back to the * 'empty' queue. */ #define RANDOM_FIFO_MAX 1024 /* * The harvest mutex protects the consistency of the entropy Fifos and * empty fifo and other associated structures. */ static struct mtx harvest_mtx; /* * Lockable FIFO ring buffer holding entropy events * If ring_in == ring_out, * the buffer is empty. * If (ring_in + 1) == ring_out (MOD RANDOM_FIFO_MAX), * the buffer is full. * * The ring_in variable needs locking as there are multiple * sources to the ring. Only the sources may change ring_in, * but the consumer may examine it. * * The ring_out variable does not need locking as there is * only one consumer. Only the consumer may change ring_out, * but the sources may examine it. */ static struct entropyfifo { struct harvest_event ring[RANDOM_FIFO_MAX]; volatile u_int ring_in; volatile u_int ring_out; } entropyfifo; /* Round-robin destination cache. */ u_int harvest_destination[ENTROPYSOURCE]; /* Function called to process one harvested stochastic event */ void (*harvest_process_event)(struct harvest_event *); /* Allow the sysadmin to select the broad category of * entropy types to harvest. */ static u_int harvest_source_mask = ((1U << RANDOM_ENVIRONMENTAL_END) - 1); /* Pool count is used by anything needing to know how many entropy * pools are currently being maintained. * This is of use to (e.g.) the live source feed where we need to give * all the pools a top-up. */ int harvest_pool_count; /* <0 to end the kthread, 0 to let it run, 1 to flush the harvest queues */ static int random_kthread_control = 0; static struct proc *random_kthread_proc; static void random_kthread(void *arg __unused) { u_int maxloop, ring_out; /* * Process until told to stop. * * Locking is not needed as this is the only place we modify ring_out, and * we only examine ring_in without changing it. Both of these are volatile, * and this is a unique thread. */ while (random_kthread_control >= 0) { /* Deal with events, if any. Restrict the number we do in one go. */ maxloop = RANDOM_FIFO_MAX; while (entropyfifo.ring_out != entropyfifo.ring_in) { ring_out = (entropyfifo.ring_out + 1)%RANDOM_FIFO_MAX; harvest_process_event(entropyfifo.ring + ring_out); /* Modifying ring_out here ONLY. Sufficient for atomicity? */ entropyfifo.ring_out = ring_out; /* The ring may be filled quickly so don't loop forever. */ if (--maxloop) break; } /* * Give the fast hardware sources a go */ live_entropy_sources_feed(); /* * If a queue flush was commanded, it has now happened, * and we can mark this by resetting the command. * A negative value, however, terminates the thread. */ if (random_kthread_control == 1) random_kthread_control = 0; /* Some work is done, so give the rest of the OS a chance. */ tsleep_sbt(&random_kthread_control, 0, "-", SBT_1S/10, 0, C_PREL(1)); } randomdev_set_wakeup_exit(&random_kthread_control); /* NOTREACHED */ } void random_harvestq_flush(void) { /* Command a entropy queue flush and wait for it to finish */ random_kthread_control = 1; while (random_kthread_control) pause("-", hz/10); } /* ARGSUSED */ RANDOM_CHECK_UINT(harvestmask, 0, ((1U << RANDOM_ENVIRONMENTAL_END) - 1)); /* ARGSUSED */ static int random_print_harvestmask(SYSCTL_HANDLER_ARGS) { struct sbuf sbuf; int error, i; error = sysctl_wire_old_buffer(req, 0); if (error == 0) { sbuf_new_for_sysctl(&sbuf, NULL, 128, req); for (i = RANDOM_ENVIRONMENTAL_END - 1; i >= 0; i--) sbuf_cat(&sbuf, (harvest_source_mask & (1U << i)) ? "1" : "0"); error = sbuf_finish(&sbuf); sbuf_delete(&sbuf); } return (error); } static const char *(random_source_descr[]) = { "CACHED", "ATTACH", "KEYBOARD", "MOUSE", "NET_TUN", "NET_ETHER", "NET_NG", "INTERRUPT", "SWI", "UMA_ALLOC", "", /* "ENVIRONMENTAL_END" */ "PURE_OCTEON", "PURE_SAFE", "PURE_GLXSB", "PURE_UBSEC", "PURE_HIFN", "PURE_RDRAND", "PURE_NEHEMIAH", "PURE_RNDTEST", /* "ENTROPYSOURCE" */ }; /* ARGSUSED */ static int random_print_harvestmask_symbolic(SYSCTL_HANDLER_ARGS) { struct sbuf sbuf; int error, i; error = sysctl_wire_old_buffer(req, 0); if (error == 0) { sbuf_new_for_sysctl(&sbuf, NULL, 128, req); for (i = RANDOM_ENVIRONMENTAL_END - 1; i >= 0; i--) { sbuf_cat(&sbuf, (i == RANDOM_ENVIRONMENTAL_END - 1) ? "" : ","); sbuf_cat(&sbuf, (harvest_source_mask & (1U << i)) ? random_source_descr[i] : ""); } error = sbuf_finish(&sbuf); sbuf_delete(&sbuf); } return (error); } void random_harvestq_init(void (*event_processor)(struct harvest_event *), int poolcount) { uint8_t *keyfile, *data; int error; size_t size, j; struct sysctl_oid *random_sys_o; #ifdef RANDOM_DEBUG printf("random: %s\n", __func__); #endif random_sys_o = SYSCTL_ADD_NODE(&random_clist, SYSCTL_STATIC_CHILDREN(_kern_random), OID_AUTO, "harvest", CTLFLAG_RW, 0, "Entropy Device Parameters"); SYSCTL_ADD_PROC(&random_clist, SYSCTL_CHILDREN(random_sys_o), OID_AUTO, "mask", CTLTYPE_UINT | CTLFLAG_RW, &harvest_source_mask, ((1U << RANDOM_ENVIRONMENTAL_END) - 1), random_check_uint_harvestmask, "IU", "Entropy harvesting mask"); SYSCTL_ADD_PROC(&random_clist, SYSCTL_CHILDREN(random_sys_o), OID_AUTO, "mask_bin", CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, random_print_harvestmask, "A", "Entropy harvesting mask (printable)"); SYSCTL_ADD_PROC(&random_clist, SYSCTL_CHILDREN(random_sys_o), OID_AUTO, "mask_symbolic", CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, random_print_harvestmask_symbolic, "A", "Entropy harvesting mask (symbolic)"); /* Point to the correct event_processing function */ harvest_process_event = event_processor; /* Store the pool count (used by live source feed) */ harvest_pool_count = poolcount; /* Initialise the harvesting mutex and in/out indexes. */ mtx_init(&harvest_mtx, "entropy harvest mutex", NULL, MTX_SPIN); entropyfifo.ring_in = entropyfifo.ring_out = 0U; /* Start the hash/reseed thread */ error = kproc_create(random_kthread, NULL, &random_kthread_proc, RFHIGHPID, 0, "rand_harvestq"); if (error != 0) panic("Cannot create entropy maintenance thread."); /* Get entropy that may have been preloaded by loader(8) * and use it to pre-charge the entropy harvest queue. */ keyfile = preload_search_by_type("/boot/entropy"); if (keyfile != NULL) { data = preload_fetch_addr(keyfile); size = preload_fetch_size(keyfile); if (data != NULL && size != 0) { for (j = 0; j < size; j += 16) random_harvestq_internal(data + j, 16, 16, RANDOM_CACHED); printf("random: read %zu bytes from preloaded cache\n", size); bzero(data, size); } else printf("random: no preloaded entropy cache\n"); } } void random_harvestq_deinit(void) { #ifdef RANDOM_DEBUG printf("random: %s\n", __func__); #endif /* * Command the hash/reseed thread to end and wait for it to finish */ random_kthread_control = -1; tsleep(&random_kthread_control, 0, "term", 0); mtx_destroy(&harvest_mtx); sysctl_ctx_free(&random_clist); } /* * Entropy harvesting routine. * This is supposed to be fast; do not do anything slow in here! * * It is also illegal (and morally reprehensible) to insert any * high-rate data here. "High-rate" is define as a data source * that will usually cause lots of failures of the "Lockless read" * check a few lines below. This includes the "always-on" sources * like the Intel "rdrand" or the VIA Nehamiah "xstore" sources. */ /* XXXRW: get_cyclecount() is cheap on most modern hardware, where cycle * counters are built in, but on older hardware it will do a real time clock * read which can be quite expensive. */ void random_harvestq_internal(const void *entropy, u_int count, u_int bits, enum random_entropy_source origin) { struct harvest_event *event; u_int ring_in; KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, ("random_harvest_internal: origin %d invalid\n", origin)); /* Mask out unwanted sources */ if (!(harvest_source_mask & (1U << origin))) return; /* Lock ring_in against multi-thread contention */ mtx_lock_spin(&harvest_mtx); ring_in = (entropyfifo.ring_in + 1)%RANDOM_FIFO_MAX; if (ring_in != entropyfifo.ring_out) { /* The ring is not full */ event = entropyfifo.ring + ring_in; /* Stash the harvested stuff in the *event buffer */ count = MIN(count, HARVESTSIZE); event->he_somecounter = get_cyclecount(); event->he_size = count; event->he_bits = bits; event->he_source = origin; event->he_destination = harvest_destination[origin]++; memcpy(event->he_entropy, entropy, count); memset(event->he_entropy + count, 0, HARVESTSIZE - count); entropyfifo.ring_in = ring_in; } mtx_unlock_spin(&harvest_mtx); }