
JIT compilation for packet filtering using Netmap
and LLVM

Daniel Peyrolón
David Chisnall

Sep 16, 2014



Purpose of the project

I This is a GSoC project for FreeBSD.

I Development effort.

I Leverage Netmap for quick packet filtering.



Netmap

I Kernel module.

I Maps NIC rings with userspace.

I Userspace network stack.

I High speed for network operations.



LLVM

I Compiler framework.

I Program compilation, analysis and
transformation.

I Widely used.



How does it work?

I How rules are interpreted.

I Example: ”accept tcp from any to any 80”
I How the JIT works.

I Loads external LLVM bitcode.
I Bitcode contains functions and structs used.
I Functions called from the JIT, inlined.
I Iterate through the ruleset and emit code.



Compilation



Benefits from this approach

I It’s easy to develop and update the compiler.

I General solution for packet filtering.

case O_ACCEPT:

rule_accept(&retval, &l, &done );

break;

emit_accept(){

Irb.CreateCall(RuleAccept, {Retval, L, Done});

}



Basic benchmarking

Basic benchmark for 1k pkts
JIT compiler Compilation 130ms

Filtering 523 µs
Interpreter Filtering 3664 µs

Speedup = x7 for filtering code
Compilation time ≡ Interpreting rules for 35480 pkts

Packets needed for amortization ≡ 41440 pkts



Future work

I Complete the firewall.

I Benchmarking, evaluation.

I Static analysis.

I Feedback-driven optimisations.



What I’m trying to say

I It works!

I Perhaps it’s interesting for someone?

I Ongoing development effort.

I Thanks to many people.



Thanks for your attention!

Questions?
Suggestions?


