
FreeBSD Test Cluster Automation

Kamil Czekirda
Warsaw University of Technology

Abstract
”FreeBSD Test Cluster Automation” is a Google Sum-
mer of Code 2015 project for FreeBSD organization to
create an infrastructure for automated tests building, in-
stalling and first booting process of FreeBSD.

The base of this project is iPXE - Open Source Boot
Firmware, which is used for controlling nodes. A small
webapplication written in python is a frontend for the
database where information about nodes, current states
and states of revisions are saved. The project is also us-
ing mfsBSD and bsdinstall extension for an automatic
and non-interactive installation process, it was done dur-
ing Google Summer of Code 2014.

On the server side the main part of the project is
FreeNAS, it is used to provide shared storage and jails
for applications. The ZFS filesystem with deduplication
enabled on dataset for source code allows to save every
tested revision of the source code with space saving.

The scope of the project was only infrastructure, with-
out focusing on tests. During the project simple tests of
building and installing FreeBSD were made, it’s similar
to https://jenkins.freebsd.org/ but on the bare metal in-
frustructure and it’s possible to test all commits, not all
commits from one period of time like in jenkins.

Another interesting application for this project is test-
ing drivers, for example network card drivers. Inside test-
ing cluster it’s possible to build a driver after any commit,
test it, measure and report.

The most important requirement during this project
was as little intervention as possible.

1 iPXE port

iPXE is open source network boot firmware, it provides
a full PXE implementation extended with additional fea-
tures such as:

• boot from a web server via HTTP and HTTPS

• boot from iSCSI

• boot from wireless network

And the most important for this project is to control
the boot process with scripts.

The firts stage of the project was creating iPXE port
for FreeBSD. The port is ready for submition and has
many possibilities for extensions.

2 Servers side

The Preboot eXecution Environment allows to boot from
a network interface. Host broadcasts a DHCP discover
a request and a DHCP server responds with a DHCP
packet that includes PXE options (the name of a boot
server and a boot file). The client downloads his boot file
by using TFTP and then executes it. In this project it is
iPXE loader and this is classical chainloading of iPXE.
In the next step iPXE loads MEMDISK kernel with the
location of modified mfsBSD iso file as its parameter and
then nodes mount shared storage via NFS protocol.

As you can see, there are a lot of services to configure:

• DHCP server

• TFTP server

• HTTP server

• NFS server

• Management application

The first step of booting node from the network is
DHCP service. DHCP server responds with a DHCP
packet that included PXE options, in this case the name
of TFTP boot server and a boot file.

An example of the dhcp server configuration:

subnet 192.168.22.0 netmask 255.255.255.0 {

range 192.168.22.10 192.168.22.50;

option routers 192.168.22.1;

option domain-name-servers 192.168.22.1;

next-server 192.168.22.19;

if exists user-class and (option \\

user-class = "iPXE") {

filename "http://192.168.22.3/menu.ipxe";

}

else {

filename "undionly.kpxe";

}

}

In this case we can see, that TFTP server is located
on 192.168.22.19 IP address, filename is different and
depends on client user-class. iPXE image (filename ”un-
dionly.kpxe”) is handed when the DHCP request comes
from a legacy PXE client. In the next step request sends
iPXE DHCP client with user-class iPXE and answer in
filename option is the url with menu.ipxe script.

2.1 TFTP Server
Trivial File Transfer Protocol (TFTP) is a service used
for transfer iPXE image compiled from the port. Nodes
download the image from the TFTP server each time they
boot. In my project I use FreeNAS and TFTP configura-
tion screen shows default configuration and it is suffi-
cient.

2.2 HTTP Server
HTTP server is used for serving iso image of custom
mfsBSD and initial script: menu.ipxe. In my case it’s
apache in the jail on the FreeNAS box.

2.3 NFS Server
The NFS service is provided by FreeNAS. It’s a storage
for source code. If node have not enough RAM memory

can also save obj files there. NFS export is stored on the
ZFS filesystem. The dataset has enabled deduplication.
This configuration allows to have access to every revision
of the source code without switching beetween revisions
in repository.

2.4 Management

The frontend of management application is written in
python with bottle framework. Information about nodes
and revisions is saved in the sqlite database. The man-
agement is the place, where the user can manage nodes
and revisions and it works as http server. Application
supports methods:

• / to provide default ipxe script

• /admin - it’s main dashboard

• /admin/add node

• /admin/edit node/:id

• /admin/delete node/:id

• /admin/add task

• /admin/delete task/:id

• /menu/:mac to send static ipxe script whose name is
saved in the database

• /static/ to provide static files

• /admin/take task/:mac to start environment prepar-
ing

• /admin/change boot/:host/:new to change boot ipxe
script

• /admin/change task status/:revision/:new status

• /admin/change node status/:hostname/:new status

Example screenshot you can see at Figure 1.

3 Client side

From client side there is only one thing I have to carry on
- set network card as the first booting device. The iPXE
uses script and decides which is the next step on booting
is - its either hard drive or network.

2

4 mfsBSD configuration

mfsBSD configuration is very simple, because I added
only these lines to mfsbsd/conf/rc.local.sample file:

sleep 10

mkdir /cluster

mount -t nfs -o nolockd 192.168.22.19:/mnt/tank \\

/freebsd/$(hostname)/cluster /cluster

sh -x /cluster/run.sh > /cluster/run.log 2>&1 &

Node mounts storage and runs cluster script, where
other instructions are.

5 iPXE scripts

For control the boot process on nodes I have four ipxe
scripts (take task, wait, cluster and hdd). The first of
them is take task.ipxe:

#!ipxe

set www 192.168.22.3

set port 8080

chain http://${www}:${port}/admin/ \\

take_task/${net0/mac}

In this script node sends request to management appli-
cation and tells them that it is clean and it is ready to take
new task. Very important parameter is mac address of
the network card. The management uses this parameter
to search which is the next one ipxe script (wait, cluster
or hdd).

The second script is wait.ipxe:

#!ipxe

set www 192.168.22.3

set port 8080

set timeout 120000

:menu

menu Creating environment, please wait...

item next Please wait...

choose --timeout ${timeout} selected

goto ${selected}

:next

chain http://${www}:${port}/menu/${net0/mac}

This script is the infinite loop. Every 120 seconds node
asks the management for new ipxe script. During this
time the management is preparing environment (creating
directories for revision, copying the source tree etc).

When server finishes preparing environment ipxe
script for node changes to cluster.ipxe:

#!ipxe

set timeout 10000

set www 192.168.22.3

set iso mfsbsd_cluster.iso

sanboot --drive 0x81 --no-describe http://${www}/${iso}

and node boots from mfsBSD iso and do tests.
When all tests are fine cluster script changes node sta-

tus (and ipxe script) to hdd:

#!ipxe

set timeout 10000

sanboot --drive 0x80 --no-describe

and node boots from HDD drive.
The last change is reseting node and set take task.ipxe

as a script to run.

6 Workflow

This is complete workflow for the node and revision.

6.1 The node
• the node starts netbooting from take task status

• in the first step of PXE booting node sends
DHCP request and DHCP server responds with
next-server and filename options and node
knows what and where from to download.

• the node downloads iPXE loader binary by TFTP
protocol and executes it

• iPXE sends DHCP request and gives an answer with
a different filename option - url to iPXE starting
script

• iPXE starting script asks the management for chain-
loading next script and authorizes itself by mac ad-
dress

• management return take task.ipxe file

• take task.ipxe runs next chainloading and node
waits for environment preparation, in this time on
server side script take task.sh prepares files (up-
date svn, rsync to new src space)

• the node chainloads cluster.ipxe script and node
starts mfsBSD

• the node mounts storage from NFS server and
building process starts (make buildworld, make

buildkernel and make ftp)

3

• after building the node tries to install the system on
hard drive from files compiled and created during
this task

• the node reboots and boots from hdd

• the node reboots and boots from the network like in
first step

If any step from building, installing or booting stage
fails then the node starts netbooting and takes a new task.

Diagram of states you can see at Figure 2.

6.2 Revision
• the first status of revision is NEW, in this status re-

vision awaits for free node to take a task

• when the node starts netbooting and revision is first
in the queue status changes to preparing

• in the next steps revision is tested by compilation,
installation and boot

• revision is marked as success or failed and logs of
every steps are available on the management server

Diagram of states you can see at Figure 3.

7 Urls

• https://wiki.freebsd.org/SummerOfCode2015/
FreeBSDTestClusterAutomation

• https://svnweb.freebsd.org/socsvn/soc2015/kczekirda/

• http://ipxe.org/

4

Figure 1: Dashboard screenshot.

5

Figure 2: Nodes states diagram

6

Figure 3: Revisions states diagram

7

