
ptnetmap:
a netmap passthrough for virtual machines

Stefano Garzarella, Giuseppe Lettieri, Luigi Rizzo
stefanogarzarella@gmail.com, g.lettieri@iet.unipi.it, rizzo@iet.unipi.it,

Università di Pisa

AsiaBSDCon 2015, Tokyo
March 15, 2015

mailto:stefanogarzarella@gmail.com?subject=
mailto:stefanogarzarella@gmail.com?subject=
mailto:stefanogarzarella@gmail.com?subject=
mailto:stefanogarzarella@gmail.com?subject=
mailto:g.lettieri@iet.unipi.it
mailto:g.lettieri@iet.unipi.it
mailto:g.lettieri@iet.unipi.it
mailto:g.lettieri@iet.unipi.it
mailto:g.lettieri@iet.unipi.it
mailto:rizzo@iet.unipi.it?subject=
mailto:rizzo@iet.unipi.it?subject=
mailto:rizzo@iet.unipi.it?subject=
mailto:rizzo@iet.unipi.it?subject=
mailto:rizzo@iet.unipi.it?subject=

ptnetmap - AsiaBSDCon 2015

• Introduction

• Background  
(netmap, paravirtualized device, netmap backend)

• ptnetmap
• architecture
• implementation

• Performance evaluation

2

Outline

ptnetmap - AsiaBSDCon 2015

• widely used to build Cloud services:
• modular
• flexible
• secure

• performance bottlenecks, especially for intensive I/O
operations
• networking services:

• router
• firewall
• middle-boxes

3

Virtual Machines (VMs)

ptnetmap - AsiaBSDCon 2015

TCP is ok thanks to GSO/TSO

high packet rates are hard everywhere:
• Physical servers

• OS-bypass (Intel DPDK, PFRING DNA)
• network stack bypass (netmap)

• Virtual Machines (VMs)
• hardware passthrough
• fast switches (eg. VALE)

4

Fast network interfaces (10/40 Gbps)

ptnetmap - AsiaBSDCon 2015

• VMs solutions have some drawbacks:
• fast switches

• hypervisor frontend/backend overhead
• hardware passthrough

• all communications (even among VMs) use the PCIe bus
• strictly hardware dependent (VMs migration difficult)

5

Virtual Machines (VMs)

ptnetmap - AsiaBSDCon 2015 6

virtual passthrough
our proposal: ptnetmap

• uses netmap API to implement the virtual
passthrough of any device supported by the
netmap framework

• fully hardware independent

• high-speed communication with:
• physical NICs (14.88 Mpps - 10Gbps line rate)
• VALE ports (20 Mpps)
• netmap-pipes (75-150 Mpps)

ptnetmap - AsiaBSDCon 2015

• most of netmap strengths:
• vendor independence
• use commodity hardware
• avoid busy polling

• flexible memory sharing:
• VALE ports

• to isolate untrusted VMs
• netmap pipes

• to create chains of trusted VMs

7

virtual passthrough (2)

ptnetmap - AsiaBSDCon 2015

ptnetmap leverages on:
• netmap framework

• L. Rizzo. netmap: A Novel Framework for Fast Packet I/
O. USENIX ATC’12

• L. Rizzo and G. Lettieri. VALE, a switched ethernet for
virtual machines. CoNEXT ’12

• paravirtualized ethernet devices
• R. Russell. virtio: towards a de-facto standard for

virtual I/O devices. SIGOPS Oper. Syst. Rev. ’08
• L. Rizzo, G. Lettieri, and V. Maffione. Speeding up

packet I/O in virtual machines. ANCS ’13

8

Background

ptnetmap - AsiaBSDCon 2015

shared memory

head
cur
tail

client
owned

TX and RX rings
buffers

Backing resource
(kernel)

• The netmap framework provides high speed network ports to
clients
• userspace applications
• in-kernel applications

9

netmap framework

ptnetmap - AsiaBSDCon 2015

netmap ports can be
• physical NICs
• port of a software switch (VALE switch)
• high performance, shared memory channel, called

netmap pipe
• other types of ports are also present, e.g. for mirroring,

logging etc.

10

netmap framework

hw + driver

network
stack

VALE switch

hw + driver

ptnetmap - AsiaBSDCon 2015

Goal: Minimize consumer/producer notifications

• guest/host notification drawback:
• VM Exit
• interrupts

• we slightly modified legacy Ethernet device emulation
(e1000) and the guest drivers to work like virtio:
• one thread on each side activated on demand
• shared memory to exchange status information
• avoid notifications

• threads actively poll the shared memory when there is traffic
• sends notifications, through NIC register (VM exit), only when the

other part is sleeping

11

paravirtualized ethernet devices

ptnetmap - AsiaBSDCon 2015

QEMU-VALE integration

frontend (e1000,. . .)

netmap backend

guest

host kernelnetmap/VALE

qemu_send_packet

qemu_send_packet

Rizzo, Lettieri, Maffione High Performance Network I/O for Virtual Machines

• frontend: emulates the hardware that the guest device driver
expects to talk to

• backend: transfers data packets to the actual network port on
the host

• frontend/backend data exchange
• data format conversion

• touch every packet
• data copy

12

network path in VMs

• netmap backend
• uses a fast netmap port in the

hypervisor
• now is available for:

• QEMU
• bhyve

ptnetmap - AsiaBSDCon 2015

even using netmap in the
guest we are inefficient:
• netmap guest is completely

unaware of the netmap host (and
vice versa)
• packets need to be copied along the

way:
• guest - frontend
• frontend - backend.

13

network path in VMs (2)

user space

kernel space

user space

kernel space

netmap guest

guest device driver

front end

head

cur

tail

.

.

.

application

Guest

Host

head

cur

tail

.

.

.

back end

host port driver

netmap host

ptnetmap - AsiaBSDCon 2015

• ptnetmap
• reduces the overhead induced by the hypervisor

frontend and backend
• provides passthrough mechanism to directly access

netmap host devices from a virtual machine

• data regions are exposed, in a protected way, to the
guest VM, such as hardware passthrough

14

ptnetmap: architecture

ptnetmap - AsiaBSDCon 2015 15

ptnetmap: architecture

user space

kernel space

user space

kernel space

netmap guest

guest device driver

front end

head

cur

tail

.

.

.

application

Guest

Host

back end

host port driver

netmap host

ptnetmapwithout ptnetmap

user space

kernel space

user space

kernel space

netmap guest

guest device driver

front end

head

cur

tail

.

.

.

application

Guest

Host

head

cur

tail

.

.

.

back end

host port driver

netmap host

ptnetmap - AsiaBSDCon 2015

• CSB (Communication Status
Block)
• shared memory page

between guest and host to
exchange messages and
information on their status

• netmap system calls issued
by the guest application
• synchronized with netmap

host using the CSB
• notification (VMExit) if the

host kernel thread is
sleeping

16

ptnetmap: architecture

user space

kernel space

user space

kernel space

netmap guest

guest device driver
head

cur

tail

.

.

.

application

Guest

Host

host port driver

sync notify

sync notify

CSB

netmap
host

front end

back end

ptnetmap
kthread

ptnetmap - AsiaBSDCon 2015

• The implementation of ptnetmap requires small
extensions:
• netmap framework
• guest driver for the paravirtualized device
• hypervisor

• Host netmap memory area
• mmap()ed by the netmap backend in the hypervisor
• exported by the hypervisor frontend as memory

residing on the emulated paravirtual device, described
by a PCI BAR

• mapped by the driver into the guest memory during the
device initialization

17

ptnetmap: implementation

ptnetmap - AsiaBSDCon 2015

• notifications guest/host
• trigger action when new

packets and/or free slots
are available

• avoid busy-wait loops

• guest in-kernel ring
states
• updated asynchronously

with the corresponding
host in-kernel states,
using the CSB

18

ptnetmap: implementation
user space

kernel space

netmap guest

guest device driver
head

cur

tail

.

.

.

application

Guest

sync notify

user space

kernel space

Host

sync notify

netmap
host

front end

back end

ptnetmap
kthread

CSB

head

cur

tail

g_need_kick

h_need_kick

host port driver

ptnetmap - AsiaBSDCon 2015

Sleep Running

notification
need_kick =

TRUE
need_kick =

FALSE

new work

no work

• The data-path adopts a virtio-like interaction
between guest and host:
• shared memory page (CSB) contains:

• copy of the ring pointers
• flags to disable notifications

• threads sleep when there isn’t work to do
• avoid busy-wait loops

19

ptnetmap: implementation
CSB

head

cur

tail

g_need_kick

h_need_kick

ptnetmap - AsiaBSDCon 2015

• two kernel threads in the host
netmap adapter:
• RX ring
• TX ring

20

ptnetmap: implementation

user space

kernel space

netmap
host

user space

kernel space

guest device driver

front end

Guest

Host

back end

TX
ptnetmap
kthread

.

.

.

TX ring

RX
ptnetmap
 kthread

.

.

.

RX ring

application

netmap guest

host port driver

CSB

ptnetmap - AsiaBSDCon 2015

• Throughput
• pkt-gen: general purpose sender/receiver with

configurable:
• packet size
• rate
• batch size
• number of threads.

• poll() to do I/O
• blocks when there are no slots in the queue to send or receive.

21

Performance: metrics

ptnetmap - AsiaBSDCon 2015

• Latency
• pkt-gen ping/pong

• sender
• transmits the packet
• waits for a response (poll())

• receiver
• waits for a packet (poll())
• immediately bounces it back.

• packets carry a timestamp generated by the sender
• measure the Round Trip Time.

22

Performance: metrics (2)

• Configuration

23ptnetmap - AsiaBSDCon 2015

Performance
Guest 1 Guest 2

Host

pkt-gen -f rx

pkt-gen -f rxpkt-gen -f tx

pkt-gen -f tx

• Configuration
• Guest - Host

24ptnetmap - AsiaBSDCon 2015

Performance
Guest 1 Guest 2

Host

pkt-gen -f rx

pkt-gen -f rxpkt-gen -f tx

pkt-gen -f tx

Guest - Host

• Configuration
• Guest - Host
• Host - Guest

25ptnetmap - AsiaBSDCon 2015

Performance
Guest 1 Guest 2

Host

pkt-gen -f rx

pkt-gen -f rxpkt-gen -f tx

pkt-gen -f tx

Host - Guest

• Configuration
• Guest - Host
• Host - Guest
• Guest - Guest

26ptnetmap - AsiaBSDCon 2015

Performance
Guest 1 Guest 2

Host

pkt-gen -f rx

pkt-gen -f rxpkt-gen -f tx

pkt-gen -f tx

Guest - Guest

• Configuration
• Guest - Host
• Host - Guest
• Guest - Guest
• Host - Host

27ptnetmap - AsiaBSDCon 2015

Performance
Guest 1 Guest 2

Host

pkt-gen -f rx

pkt-gen -f rxpkt-gen -f tx

pkt-gen -f tx

Host - Host

• Configuration
• Guest - Host
• Host - Guest
• Guest - Guest
• Host - Host

• Guest TX over  
physical port

28ptnetmap - AsiaBSDCon 2015

Performance
Guest 1 Guest 2

Host

pkt-gen -f rx

pkt-gen -f rxpkt-gen -f tx

pkt-gen -f tx

Host 2

Physical
port

Physical
port

pkt-gen -f txpkt-gen -f rx

Guest TX
(phy)

Physical
port

• Configuration
• Guest - Host
• Host - Guest
• Guest - Guest
• Host - Host

• Guest TX over  
physical port

• Guest RX over  
physical port

29ptnetmap - AsiaBSDCon 2015

Performance
Guest 1 Guest 2

Host

pkt-gen -f rx

pkt-gen -f rxpkt-gen -f tx

pkt-gen -f tx

Host 2

Physical
port

Physical
port

pkt-gen -f txpkt-gen -f rx

Guest RX
(phy)

Physical
port

ptnetmap - AsiaBSDCon 2015

• Experimental setup
• CPU: Intel Core i7-3770K at 3.50 GHz

• 4 cores / 8 threads
• RAM: 8 GB DDR3 at 1.33 GHz
• NIC: 10Gbps - Intel 82599ES dual-port
• GuestOS: FreeBSD 11.0-CURRENT or Linux 3.12
• HostOS: Linux 3.17 + netmap module + ptnetmap

support
• Hypervisor: QEMU-KVM + netmap-backend + ptnetmap

30

Performance

ptnetmap - AsiaBSDCon 2015

VALE Switch:
• ports isolation  

(data copy)
• bottleneck is the thread 

(on the sender side)  
that executes the  
data copy

• Host - Host
• reference curve  

(sender and receiver are both in the host)
• Guest - Host

• the sending thread in the guest only has to send notification,
while the copy is done by the kernel thread in the host.

31

Throughput

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 1 2 4 8 16 32 64 128 256 512 1024

T
h
ro

u
g
h
p
u
t

[M
p
p
s]

TX Batch [pkts]

Guest to Host
Host to Guest

Guest to Guest
Host to Host

ptnetmap - AsiaBSDCon 2015

netmap pipes:
• shared memory  

(zero-copy)
• Guest - Host

• similar to VALE ports
• large drop of performance

with higher batch sizes is
caused by the phenomenon
of Short queue regime

32

Throughput

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

T
h

ro
u

g
h

p
u

t
[M

p
p

s]

TX Batch [pkts]

Guest to Host
Host to Guest

Guest to Guest
Host to Host

ptnetmap - AsiaBSDCon 2015

• when the batch size is small
• bottleneck is the sender and 

the throughput grows proportionally

• above a threshold
• the free space in the queue becomes small and the

sender will periodically block
• the blocking in turn causes additional load also on the

receiver
• in addition to read the packets, must also wake up the

transmitter thread.

33

Short queue regime

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

T
h

ro
u

g
h

p
u

t
[M

p
p

s]

TX Batch [pkts]

Guest to Host
Host to Guest

Guest to Guest
Host to Host

ptnetmap - AsiaBSDCon 2015

physical ports
• 10Gbps NIC
• the guest able to

reach full line rate
even with modest
batch sizes

• This result matches
the performance of
other passthrough
solutions and netmap
on bare metal

34

Throughput

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16 32 64 128 256 512 1024

T
h

ro
u

g
h

p
u

t
[M

p
p

s]

TX Batch [pkts]

Guest RX
Guest TX

10Gbps line rate [14.88 Mpps]

ptnetmap - AsiaBSDCon 2015

We measure the latency in two cases:
• blocking case

• all components waiting an event:
• pkt-gen uses poll()
• the kernel threads and the guest are sleeping, waiting for a

notification or an interrupt
• Host - Host: 5.2 μs
• Guest - Guest: 25 μs

• latency dominated by the cost of two VM exits and two
interrupts.

35

Latency

ptnetmap - AsiaBSDCon 2015

• active case
• we simulate the active state:

• pkt-gen is modified to use non-blocking ioctl() to send
and receive

• the kernel threads are forced in an active state, thus avoiding
all interrupts, VM exits, and process wakeups

• Host - Host: 1.2 μs
• Guest - Guest: 2.1 μs

• These results have been obtained using VALE switch
and are marginally higher than pipes, because has an
extra copy and additional locking in the path.

36

Latency

ptnetmap - AsiaBSDCon 2015

• VMs with ptnetmap support:
• can saturate a 10Gbps link at 14.88 Mpps
• talk at over 20 Mpps to untrusted VMs
• over 75 Mpps to trusted VMs

• ptnetmap is implemented as an extension of the
netmap framework and it will be publicly available.
• http://info.iet.unipi.it/~luigi/netmap/

• We now support FreeBSD and Linux guests and KVM
host.

• We want to implement the same functionality in bhyve.

37

Conclusions and Future Works

http://info.iet.unipi.it/~luigi/netmap/

ptnetmap - AsiaBSDCon 2015

Thank you!

Useful links:
• http://info.iet.unipi.it/~luigi/netmap/
• https://code.google.com/p/netmap/

Luigi Rizzo rizzo@iet.unipi.it
Giuseppe Lettieri g.lettieri@iet.unipi.it
Stefano Garzarella stefanogarzarella@gmail.com

http://info.iet.unipi.it/~luigi/netmap/
https://code.google.com/p/netmap/
mailto:rizzo@iet.unipi.it?subject=
mailto:rizzo@iet.unipi.it?subject=
mailto:rizzo@iet.unipi.it?subject=
mailto:rizzo@iet.unipi.it?subject=
mailto:rizzo@iet.unipi.it?subject=
mailto:rizzo@iet.unipi.it?subject=
mailto:rizzo@iet.unipi.it?subject=
mailto:g.lettieri@iet.unipi.it
mailto:g.lettieri@iet.unipi.it
mailto:g.lettieri@iet.unipi.it
mailto:g.lettieri@iet.unipi.it
mailto:g.lettieri@iet.unipi.it
mailto:g.lettieri@iet.unipi.it
mailto:stefanogarzarella@gmail.com?subject=
mailto:stefanogarzarella@gmail.com?subject=
mailto:stefanogarzarella@gmail.com?subject=
mailto:stefanogarzarella@gmail.com?subject=
mailto:stefanogarzarella@gmail.com?subject=

ptnetmap - AsiaBSDCon 2015

• The netmap framework
provides high speed
network ports to clients
• userspace applications
• in-kernel applications

39

netmap framework
shared memory

head
cur
tail

client
owned

TX and RX rings
buffers

Backing resource
(kernel)

• Logically, each port is a set of transmit and receive queues and associated
packet buffers, which clients mmap() to support zero copy I/O.

• Data transfers occur through the queues using ioctl() for non-blocking I/O,
and select(), poll(), kqueue(), epoll() for blocking I/O.

• Each queue (and its buffers) is logically divided in two regions: one owned by the
client, the other owned by the kernel. The boundary between the two regions is
marked by two pointers, head and tail.

ptnetmap - AsiaBSDCon 2015

Paravirtualized TX path

vCPU Thread IOThread
TX ring

qemu_send_packet

Interrupt

TDT write

g_tdt

g_ntc

g_wants_kicks

h_wants_kicks

CSB

Rizzo, Lettieri, Maffione High Performance Network I/O for Virtual Machines

• We slightly modify legacy Ethernet device
emulation (e1000) and the corresponding guest
drivers to make them work like virtio:
• Real HW and emulated TX

• NIC register (TDT) writes used for both:
• updating status  

(available packets to send)
• notification (status has changed)

• Paravirtualized TX emulation
• Separate the two functions:

• status only updated in shared memory  
(CSB - Communication Status Block)

• NIC register (TDT) only used for notification

40

paravirtualized ethernet devices

