Report 2: File-read System Call testing

Explicit System Call Testing

The test application would trigger all Syscalls one by one, evaluating that the audit record contains
all the expected parameters, e.g the arguments, valid argument types, return values etc. The testing
will be done for various success and failure modes, with cross checking for appropriate error codes
in case of failure mode.

Repository

AuditTestSuite

Directory Structure

Source contains following significant files
src/filesystem

- readlink.c : Source for triggering readlink (2) and readlinkat (2), used for following symbolic
links.

- open.c : Source for triggering open (2) and openat (2). Note: syscall (2) is used for calling open as
libc converts 'open(2)' to 'openat(2)'.

- test : A POSIX compliant shell script which does all the hard work. From firing off the network
binary to extracting the data from resulting trail and analysing the result. Detailed functioning of
the script is described later.

Approach
Here is how | attempted to test the file-read (fr) syscalls.

1) Get all audit_events with file-read(fr) audit class.

$ cat /etc/security/audit event | grep ":fr"
22:AUE READLINK:readlink (2) :fr
72:AUE OPEN R:open (2) - read:fr
80:AUE OPEN RW:open(2) - read,write:fr, fw
270:AUE_OPENAT R:openat(2) - read:fr

278 :AUE_OPENAT RW:openat (2) - read,write:fr,fw
347:AUE_DARWIN LOADSHFILE:load shared file():fr

361 :AUE DARWIN COPYFILE: copyfile() :fr, fw
43037:AUE_LOADSHFILE:load shared file() :fr

43051 :AUE COPYFILE:copyfile(2) :fr, fw

43151:AUE READLINKAT:readlinkat (2) :fr
43170:AUE_OPEN EXTENDED R:open extended(2) - read:fr

43178 :AUE_OPEN EXTENDED RW:open extended(2) - read,write:fr, fw



https://github.com/aniketp/AuditTestSuite

Note: From the obtained results, it is noticed that some Darwin supported system calls are
deprecated, these will be ignored.

Description of test

2) Set the audit flag:fr (file-read)

sed —i "" '/\<flags:/s/\(.*\)/flags:fr/' /etc/security/audit control

3) Start the audit daemon and set a new trail for recording the syscalls

$ service auditd start; audit -n

4) Create a temporary file and its symbolic link in the /tmp directory. These disposable files will be
used to trigger the open (2) and openat (2) syscalls in read-write only (no-create) mode and
readlink (2), readlinkat (2) for symlink following.

5) Fire off the syscalls, one after the other, they will read and close the file/symbolic link.

./open &

./readlink &

6) Rest of the steps are same as in the testing of network socket system calls, i.e Report1

Troubles encountered

The GNU libc converts open (2) to openat (2) to optimize the resource usage in case no file
descriptor is passed to open (2). With no other option, | presented this issue to the
#freebsd-security IRC channel and a member resolved it by suggesting the use of sysca11 (2) for
calling open (2). i.e

syscall (SYS open, "/tmp/templog", O RDWR)

With this approach, | was finally able to audit open (2) :smiley:

Result

Audit of all concerned tests (in this case too) was successful (Yay! x2)

$ ./test



https://gist.github.com/aniketp/4311599ab72efe73d8a3d3e1c93f3759

Audit Directory: /var/audit ..
Starting auditd.

Audit daemon and new trail started ..
Launching system calls

Audit daemon stopped ..

Trigger sent.

Success : openat (2)

Failure : openat (2)

readlink (2)
readlink (2)

Success : readlinkat (2)
readlinkat (2)

Tests evaluated:
Tests passed: 8

Further plan and Improvements

- Add tests for the remaining file-read syscalls, e.g copyfile (2) and open extended (2). Might need
to use syscall (2) for calling both of them as it is possible libc modifies them too.

Bugs

- Sometimes, setting audit flag as £r (file-read) continuously logs openat (2) and it renders the audit
system useless.

Edit

Added tests for a lot more file-create (fc) system calls * symlink(2) & symlinkat(2) * mkdir(2) &
mkdirat(2) * mkfifo(2) & mkfifoat(2) * mknod(2) & mknodat(2) * link(2) & linkat(2)
Although it remains to automate them!



